Main-Group Catalysis for H₂ Purification Based on Liquid Organic Hydrogen Carriers

<u>Y. Hoshimoto</u>^{*,1)}

¹⁾ Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Keywords: H₂ purification, liquid organic hydrogen carriers (LOHCs), hydrogenation **Corresponding author***: hoshimoto@chem.eng.osaka-u.ac.jp

Abstract

We demonstrate a strategy to separate H_2 from a gaseous mixture of $H_2/CO/CO_2/CH_4$ that can include an excess of CO and CO₂ relative to H_2 and simultaneously store it in *N*-heterocyclic compounds that act as liquid organic hydrogen carriers (LOHCs), which can be applied to produce H_2 by subsequent dehydrogenation. Our results demonstrate that LOHCs can potentially be used for H_2 purification from CO- and CO₂-rich crude H_2 in addition to their well-established use in H_2 storage.

1. Introduction

Molecular hydrogen (H₂) is an essential reductant and one of the most promising energy carriers of the future. Thus, it can be expected that a huge amount of H₂, on a magnitude of more than 10^{12} standard cubic feet/year, will be produced from a wide range of hydrocarbon and renewable resources.¹ The predominant contemporary route to H₂ production includes the intensive purification of crude H₂, which is a gaseous mixture of H₂, CO, CO₂, and other components that is produced by gasification, reforming, and/or water-gas shift (WGS) (process I in Fig. 1). Purification processes such as pressure swing adsorption (PSA), membrane separation, and cryogenic separation critically determine the purity of the H₂ and influence the total energy consumption of the H₂ production process, making it cost-inefficient. Thus, although H₂ can currently be stored after or during the process I in Fig.

1, we envisaged a solution where H₂ could be stored in its carrier directly from crude H_2 . which often includes more CO than H_2 , without the requirement for any of the aforementioned purification shift and processes (process II in Fig. 1).³ Moreover, the recovery of H₂ after our proposed path ultimately leads to the production of highly pure H₂.

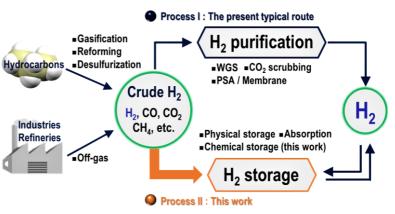


Fig. 1 Research background and concept of this work.

2. Experiment

A 30 mL autoclave was charged with 2-methylquinoline and triarylborane. Once sealed, the

autoclave was pressurized with $H_2/CO/CO_2$ (4 atm each) and heated to 100 °C for 2 h. After cooling to room temperature, all volatiles were removed *in vacuo*. Then, the reaction mixture was transferred into a 10 mL two-neck flask. The reaction mixture was then stirred at 200 °C for 3 h.

3. Results and discussion

In the presence of catalytic amount of our original triarylborane catalyst, the hydrogenation of 2-methylquinoline proceeded effectively (upto 1520 turnover) at 100 °C under the solvent-free, mixed-gas (H₂/CO/CO₂; 1/1/1 molar) conditions (Fig. 2). After degasification to remove CO and CO₂, dehydrogenation from the tetrahydroquinoline was carried out at 200 °C, which afforded H₂ of >99.9% purity with the regeneration of 2-methylquinoline.

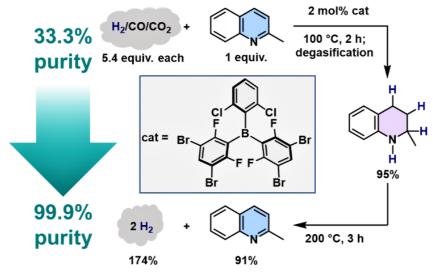


Fig. 2 H_2 purification based on the borane-catalyzed hydrogenation of 2-methylquinoline under mixed-gas conditions and subsequent catalytic dehydrogenation.

4. Conclusions

The present results demonstrate a proof-of-concept for a H₂-purification technology based on LOHCs that goes beyond their well-established use in H₂ storage. This technology can be expected to change the industrial value of crude H₂ containing substantial amounts of CO, CO₂, and CH₄, which can be produced from a variety of carbon resources such as biomass and industrial off-gases. Moreover, this work demonstrates a new aspect of main-group catalysis beyond its application as a simple alternative to well-established transition-metal-catalyzed processes, i.e., the main-group-catalyzed hydrogenation of unsaturated molecules under mixed-gas conditions.

References

- 1) K. Liu, C. Song and V. Subramani, Eds., *Hydrogen and Syngas Production and Purification Technologies*. (Wiley, 2010).
- 2) T. Hashimoto, T. Asada, S. Ogoshi and Y. Hoshimoto, Main-group catalysis for H₂ purification based on liquid organic hydrogen carriers, Science Advances, 8, eade0189 (2022). DOI: 10.1126/sciadv.eade0189