Ferromagnetism of V and Fe Doped TiO₂ by Mechanical Milling

Yoshihide Kimishima, Shinya Ishihara, Masatomo Uehara and Takahiro Yamaguchi

Department of Physics, Faculty of Engineering, Graduate School of Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama 240-8501, Japan Fax: +81-45-339-4182, e-mail: kimi@ynu.ac.jp

Vanadium and iron doped rutile-type TiO₂ were prepared by mechanical milling(MM) at 500 rpm for 15 minutes from the powder mixtures of $(x/2)V_2O_5(V_2O_3) + (1-x)TiO_2$ and $(x/2)\gamma$ -Fe₂O₃ + $(1-x)TiO_2$. XRD results showed the particle diameter *d* was about 10nm for host TiO₂ powder by MM, and MM for the mixtures of V₂O₅/TiO₂ and γ -Fe₂O₃/TiO₂ realizes the V and Fe doped TiO₂ nano powders. Magnetization measurement showed that *M* at 300K and 5 kOe was $0.002(x=0.1)-0.004(x=0.05) \mu$ B/V-ion for V_x Ti_{1-x}O₂, $0.024(x=0.05)-0.035(x=0.1) \mu$ B/Fe-ion for Fe_xTi_{1-x}O₂. Thus the diluted ferro-magnetic semiconductor powder of (V,Fe)_xTi_{1-x}O₂ with *T*_c higher than room temperature were successfully prepared by MM. But all of them were insulators, and not half metallic.

Key Words : Rutile TiO₂, Dilute magnetic semiconductor, Mechanical alloying, Ferromagnetism, Magnetization

1. INTRODUCTION

Transition metal (TM) doped diluted magnetic semiconductor (DMS) $(TM)_x Ti_{1-x}O_2$ has been studied to realize the new room temperature ferromagnetic materials for the spintronics devises [1]. The II-VI semiconductor of TiO₂ has a wide band gap of about 3.4 eV and a stable rutile-type crystal structure. It is transparent in visible region and becomes a good conductor by doping of metallic elements. Therefore transition metal-doped TiO₂ has been expected as the multifunctional material with magnetic, conductive and optical properties.

The *ab initio* calculations for the $(TM)_x Ti_{1-x}O_2$ (TM= Mn, Fe, Co, Ni and Cu) were performed [2], and it was concluded that magnetic moments appeared for Mn, Fe and Co, but not for Ni and Cu. For example, the magnetic moment of Fe_xTi_{1-x}O₂ (x=0.06-0.25) were 1.7-2.7 μ_B /Fe, which depended on the oxygen vacancies and not on x.

For the V-doped rutile TiO_2 , magnetism and electronic structure were theoretically investigated [3], and stable ferromagnetic state was found. The electronic structure was half-metallic by local density approximation (LDA), but it was semiconductive by LDA+Hubbard coefficient. The calculated V magnetic moment were 0.79 and 0.92 μ_B for LDA- and LDA+H-result, respectively.

In the present study, TM-dopings into TiO_2 were tried by mechanical milling (MM) using planetary ball mill from oxide precursors of TM and TiO_2 .

2. SAMPLE PREPARATION AND EXPERIMENTAL

Commercial TM oxides (V₂O₅, VO₂, Cr₂O₃, CrO₂, Fe₃O₄, α -Fe₂O₃, γ -Fe₂O₃, CoO, Co₃O₄, and NiO) and rutile-TiO₂, were used as the precursor for (TM)_xTi_{1-x}O₂ samples. The powder mixtures of TM-oxide and ZnO with the value of *x* between 0.05 and 0.20 were milled by the planetary ball mill (Fritch Pulverisette-7, Germany) with WC vials. The inner diameter and volume of each vial were 40 mm and 45 cm³, respectively, and the WC

balls with 15 mm diameter were used as the grinding media. About 2 g of powder mixture was the starting material. The volume ratio of balls and powder was about 50 : 1. Rotation speed and rotating time were kept at 500 rpm and 15 min, respectively.

The composition of milled powders were characterized by the CuK α X-ray powder diffraction (XRD). The superconducting quantum interference devise (SQUID) were used for the magnetization measurements.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1 Mechanical milling effect for TiO₂ powder

XRD patterns of TiO_2 powder milled by WC vial and balls showed that of rutile TiO_2 with the lattice parameters of a = 0.4594 nm and c = 0.29589nm [3]. The partial phase of anatase in the TiO_2 precursor disappeared after MM. By MM, diffraction peak intensity decreased as the rotation speed increased between 100 rpm and 500 rpm. At 600 rpm, XRD patterns were same as that of 500 rpm.

From the half width of each diffraction peak, the mean crystallographic correlation length d of TiO₂ powder was estimated by Sherrer's formula. The rpm-dependence of TiO₂ particle diameter is shown in Fig. 1. The d of commercial TiO₂ powder was about 50 nm, and it monotonously decreased as the rotation speed of ball mill increased. At 500 rpm, d decreased to about 10 nm. Above 500 rpm, d was nearly constant at 10 nm.

From the above results, it could be assumed that the mechanical milling produced TiO_2 nano-particles or partially amorphous TiO_2 . Unchanged crystal symmetry of rutile type showed the possibility of transition metal doping into TiO_2 by the mechanical milling method.

Since the above results were reproducible for the samples with different milling time above 15 minutes, we adopted the shortest milling time of 15 minutes in the following sample preparations. Increasing temperature of milling vial and balls was evident for the rotation speed

higher than 400 rpm. Therefore we could not neglect the heating effect for the following experimental results.

We tried to dope V, Cr, Fe, Co and Ni, but only V and Fe showed the possibility of doping into TiO_2 by mechanical milling. Therefore, here we introduce the experimental results of V and Fe doped TiO_2 .

Fig. 1 Rotation speed-dependence of particle diameter of rutile-TiO₂ powder milled for 15 minutes.

3.2 V doping into rutile TiO₂

Fig. 2 XRD patterns of $(0.025V_2O_5 + 0.95TiO_2)$ before and after milling at 500 rpm for 15 minutes.

The XRD results for $V_{0.05}Ti_{0.95}O_2$, which means the mixed and milled powder of $0.025V_2O_5 + 0.95TiO_2$, are shown in Fig. 2. Miller indices are shown only for rutile TiO₂ [4]. The asterisks show diffraction peaks of orthorhombic V_2O_5 , which has the lattice parameters of a = 0.4383 nm, b = 0.3571 nm and c = 1.1544 nm [5]. A peak with cross-mark shows that of anatase TiO₂ [6]. Comparing the profile of the sample before milling (0 rpm), the milled samples at 500 rpm for 15 minutes only show the broadened diffraction peaks of rutile TiO₂ with

d of 9-10 nm and no diffraction peak of V_2O_5 and anatase TiO₂. Therefore we assume that the V-doping into TiO₂ is realized by MM at 500 rpm for 15 min.

Fig. 3 XRD patterns of $(0.05V_2O_3 + 0.9TiO_2)$ before and after milling at 500 rpm for 15 minutes.

The XRD results for the mixed and milled powder of $0.025V_2O_3 + 0.95TiO_2$, are shown in Fig. 3. Miller indices are shown only for rutile TiO₂, and the asterisks show diffraction peaks of V_2O_3 , which has the lattice parameters of a = 0.49515 nm and c = 1.4003 nm [7]. A peak with cross-mark shows that of anatase TiO₂. Since the milled samples at 500 rpm for 15 minutes only show the broadened diffraction peaks of rutile TiO₂, the V-doping into TiO₂ can be also assumed for this system.

3.3 Fe doping into rutileTiO₂

Fig. 4 XRD patterns of $0.025(\gamma - Fe_2O_3) + 0.95TiO_2$ before and after milling at 500 rpm for 15 minutes.

The XRD results for nominal $Fe_{0.05}Ti_{0.95}O_2$, which means the mixed and milled powder of $0.025(\gamma - Fe_2O_3) + 0.95TiO_2$, are shown in Fig. 4. Comparing the profile of the sample before milling (0 rpm), the milled samples

show only broadened diffraction peaks of pure TiO₂ with the size of 9-10 nm. After milling at 500 rpm for 15 min., the diffraction peaks of cubic γ -Fe₂O₃, which has the lattice parameters of a = 0.83539 nm [8], and that of anatase TiO₂ disappeared

3.4 Magnetic property of V-doped rutile TiO₂

Temperature dependences of magnetization were shown in Fig. 5 for $V_x Ti_{1-x}O_2$. The x = 0.05 and 0.1 sample from $[(x/2)V_2O_5+(1-x)TiO_2]$ show weakly ferromagnetic behavior with Curie temperature T_c far above 300 K, but paramagnetic behaviors appeared below 100 K. Meanwhile the x = 0.1 sample from $[0.05V_2O_3+$ $0.9TiO_2]$ shows a paramagnetic behavior below 300 K.

Fig. 5 Thermo-magnetic curves of $V_x Ti_{1-x}O_2$ between 5 and 300 K under 5 kOe.

Fig. 6 Magnetization curves of $V_x Ti_{1-x}O_2$ at 300 K.

Field dependent magnetizations of $V_x Ti_{1-x}O_2$ are shown in Fig. 6, where the magnetization values were taken per unit weight of each sample. The saturation magnetization M_s of milled $[(x/2)V_2O_5+(1-x)TiO_2]$ at 300 K are about 0.86×10^{-3} and 1.4×10^{-3} emu/g for x =0.05 and 0.1 sample, respectively. They correspond to 0.0041 μ_B /V-ion for x=0.05 and 0.0021 μ_B /V-ion for x=0.1. Meanwhile *M* of milled $[0.05V_2O_3+0.9TiO_2]$ is completely paramagnetic at 300 K.

In the previous work, room temperature ferromagnetism of $V_{0.05}Ti_{0.95}O_2$ was only observed for anatase TiO₂ thin films [9], where the M_s was 3-5 μ_B /V-ion at 300 K. Extremely small M_s in the present $V_xTi_{1-x}O_2$ system might be due to the coexistence of amorphous V-clusters with paramagnetic property as shown in Fig. 5.

3.5 Magnetic property of Fe doped rutile TiO₂

Temperature dependences of magnetization were shown in Fig. 7 for $Fe_xTi_{1-x}O_2$. The x = 0.05 and 0.1 samples also show the ferromagnetic behaviors with Curie temperature T_c far above 300 K. Paramagnetic behaviors due to impurities appeared below about 50 K.

Field dependent magnetizations of Fe_xTi_{1-x}O₂ are shown in Fig. 8. The saturation magnetization M_s are about 0.084 and 0.24 emu/g for x =0.05 and 0.1 sample, respectively. They correspond to 0.024 μ_B /Fe-ion for x=0.05 and 0.035 μ_B /Fe-ion for x=0.1.

Fig. 7 Thermo-magnetic curves of $Fe_xTi_{1-x}O_2$ between 5 and 300 K under 5 kOe.

Fig. 8 Magnetization curves of $V_x Ti_{1-x}O_2$ at 300 K.

Room temperature ferromagnetism were reported for $Fe_xTi_{1-x}O_2$ thin film [10,11] and bulk [12, 13]. However room temperature ferromagnetism by secondary phase such as Fe_3O_4 [14], α -Fe₂O₃ [15] or absence of ferromagnetism [16] were also reported for thin film and bulk system.

In the Fe_xTi_{1-x}O_{2-y} (x=0.02, 0.06 and 0.08) reduced thin films [10], the saturation magnetization per Fe ion were 2.3-2.4 μ B and independent of x. In the Fe_xTi_{1-x}O₂ thin film of x=0.126, small M_s of 0.051 μ B/Fe was devected [11]. In the bulk Fe_xTi_{1-x}O₂ system, the M_s of 0.4-0.7 μ B/Fe were observed [12, 13].

Relatively small M_s in our $Fe_xTi_{1-x}O_2$ system may be due to the distortion or deficiency in the crystal lattice under instantly high pressure and high temperature by mechanical milling process.

CONCLUSION

V and Fe could be doped into rutile-TiO₂ by the mechanical milling of the mixed powders of TiO₂ and V₂O₅, V₂O₅ or γ -Fe₂O₃. Milled V_xTi_{1-x}O₂ powders prepared from [(x/2)V₂O₅+(1-x)TiO₂] (x=0.05 and 0.1) showed the weak ferromagnetism at 300 K, but the V_{0.1}Ti_{0.9}O₂ prepared from [0.5V₂O₃+0.9TiO₂] was completely paramagnetic below 300 K. The Fe_xTi_{1-x}O₂ powders from [(x/2) γ -Fe₂O₃+(1-x)TiO₂] (x = 0.05 and 0.1) showed visible room temperature ferromagnetism.

Thus the diluted ferro-magnetic semiconductor powder of $(V,Fe)_xTi_{1-x}O_2$ with T_c higher than room temperature were successfully prepared by mechanical milling. But all of them were insulators, and not half metallic. It is a problem to identify the V- and Fe-doping into ZnO by transmitted electron microscopy (TEM) and energy dispersive x-ray analysis (EDX). These experimental results shall be reported in the near furure.

ACKNOWLEDGEMENT

The present work was supported by the Project in Venture Business Laboratory of Yokohama National University.

REFERENCES

- [1] R. Janish, P. Gopal and N.A. Spaldin, J. Phys.: Condens. Matter, 17, R657-89 (2005).
- [2] L.A. Errico, M. Rentería and M. Weissman, *Phys. Rev.* B, 72, 184425-1-8 (2005).
- [3] G.Y. Gao, K.L. Yao and Z.L. Liu, Phys. Lett. A, 359, 523-527 (2006).
- [4] I.E. Grey, L. Christina, C.M. MacRae and L.A.Bursill, J. Solid State Chem., 127, 240-47 (1996).
- [5] V. Shklover, T. Haibach, F. Ried, R. Nesper and P. Novák, J. Solid State Chem., 123, 317-23 (1996).
- [6] J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson, Jr., and J.V. Smith, J. Am. Chem. Soc., 109, 3639-46 (1987).
- [7] P.D. Dernier, J. Phys. Chem. Solids, **31**, 2569-75 (1970).
- [8] S.N. Inamdar and S.K. Haram, J. Nanosci. Nanotech., 6, 2155-58 (2006).
- [9] N.H. Hong, J. Sakai, W. Prellier and A. Ruyter, *Physica B*, 355, 295-98 (2005).
- [10] Z. Wang, J. Tang, L.D. Tung, W. Zhou and L. Spinu,

J. Appl. Phys., 93, 7870-72 (2003).

- [11] N.H. Hong, J. Sakai and W. Prellier, J. Magn. Magn. Mater., 281, 347-52 (2004).
- [12] E.C. Kim, S.H. Moon, S.I. Woo, J.H.Cho, Y.G. Joh and D.H. Kim, *Solid State Commun.*, **132**, 477-80 (2004).
- [13] A.C. Cabrera, L. Errico, C.E. Rodrígez Torres, F.H. Sánchez, *Physica B*, **389**, 103-6 (2007).
- [14] Y.J. Kim, S. Thevuthasan, T. Drouby, A.S. Lea, C.M. Wang, V. Shutthanandan, R.P. Sears, B. Taylor and B. Sinkovic, *Appl. Phys. Lett.*, 84, 3531-33 (2004).
- [15]S. Zhu, Y. Li, C. Fan, D. Zhang, W. Liu, Z. Sun and S. Wei, *Physica B*, **364**, 199-205 (2005).
- [16] Ll. Balcells, C. Frontera, F. Sandiumenge, A. Roig, Martínez, J. Kouam and C. Monty, *Appl. Phys. Lett.*, 89, 12501-1-3 (2006).

(Recieved :January 15, 2008 ; Accepted June 20, 2008)