Mechanochemical Synthesis of LnCoO₃ (Ln: La, Pr, Dy)

O. Abe¹, N. Mantoku¹, T. Yamada² and S. Mitachi²

¹ The Research Center for Superplasticity, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511

Fax: +81 294 38 5078, e-mail: abe@mx.ibaraki.ac.jp

² Fine Ceramics Laboratory, Hokko Chemical Industry, 2165 Toda, Atsugi 243-0023

Fax: +81 46 230 2917, e-mail: mitachi-s@hokkochem.co.jp

Synthesis of lanthanoid cobaltates, $LnCoO_3$ (Ln: La, Pr, Dy), via the mechanochemically prepared complex (oxy-)hydroxides has been studied. The hydroxides are prepared by grinding $Co(OH)_2$ or Co_3O_4 with Ln_2O_3 (Ln: La, Dy) or Pr_6O_{11} in acetone containing a very small amount of H_2O in $LnCoO_3 \cdot 4H_2O$ composition. The starting hydroxides act as the reactive grinding aids to each other. La_2O_3 and $Co(OH)_2$ form the complex hydroxide, $LaCo(OH)_5$, that is a sort of inorganic polymers having La-O-Co bond. The hydration affinity of trivalent Co^{3+} ions is not high enough to form complex hydroxide, $LaCo(OH)_6$. Then, the addition of H_2O_2 to the grinding liquid results in the formation of oxyhydroxide, $LaCoO(OH)_4$. These (oxy-)hydroxides are directly converted to pseudo-tetragonal $LaCoO_3$ at 600° C and rhombohedral $LaCoO_3$ above 800° C without forming any by-product. The redox interaction between $Co(OH)_2$ and Pr_6O_{11} , which shows the poor reactivity with Fe₂O₃, enables the formation of $PrCoO(OH)_4$. Contrary, the reaction with Dy_2O_3 becomes poor.

Key words: LaCoO₃, PrCoO₃, DyCoO₃, synthesis, mechanochemistry, crystallization

1. INTRODUCTION

Perovskite lanthanoid transition-metal oxides are candidate as redox catalysts and gas sensors, electrode materials for fuel cells, and so on [1,2]. These materials are synthesized by solid-state reactions and recently by build-up processes such as sol-gel methods. The authors have demonstrated the synthesis of perovskite-LnFeO₃ (Ln: La. Pr. Sm. Gd, Dy, and Yb) by a mechanochemical route in previous papers [3,4]. In this synthesis process, the starting Ln₂O₃ and Fe₂O₃ powders have been ground in organic liquids containing a small amount of H_2O , where Ln_2O_3 provides a $Ln(OH)_3$ colloids acting as a reactive grinding aid. The other starting material, Fe₂O₃, is kneaded into the colloid to form complex oxyhydroxides. Slightly hydrated $LnFeO_3 \cdot xH_2O$ (x=0.9-1.4) has been obtained by the dehydration-condensation of the intermediate oxyhydroxide under the grinding stress.

In the present paper, this mechanochemical process has been applied to the synthesis of $LnCoO_3$ (Ln: La, Pr, Dy). The reactivity is discussed in relation to the potential of the starting materials to redox and hydration reactions in the combination of $Co^{II}Co^{III}_2O_4$ or $Co^{II}(OH)_2$ and La_2O_3 , Pr_6O_{11} or Dy_2O_3 . The effect of H_2O_2 as an oxidant in the grinding liquid has also been studied.

2. EXPERIMENATL

High-purity lanthanoid oxide powders (purity: >99.9%) supplied from Hokko Chem. Ind. were used after the heat-treatment at 500°C for 3h. The specific surface area (SSA) was 6.5 (La₂O₃), 2.2 (Pr_6O_{11}), and 1.6 m²·g⁻¹ (Dy₂O₃). The cobalt source

used, Co₃O₄ and Co(OH)₂, was the reagent-grade powders (Kanto-Kagaku). Mechanical grinding was conducted by the use of a planetary mill (Kurimoto-Tekko-Sho). Weighed mixture of the starting powders (20g as LnCoO₃) was encapsulated into the grinding vessel (capacity: 410cm³) made of stainless-steel with acetone (76cm³), a small portion of H₂O (equivalent amount to LnCoO₃ · 4H₂O composition including H_2O for $Co(OH)_2$), and grinding media (\$\$\phi2, YTZ balls, fractional filling: 0.40). Grinding was performed for 3h with 15min cooling interval in every 1h to maintain the temperature below 50°C. The ground products were filtered with 0.2µm Teflon membrane, washed with acetone, and dried at 85°C under vacuum. The ground products were calcined at 300-1000°C for 1h in air for crystallization.

Crystalline phases were identified by X-ray diffractometry (XRD, Cu $K\alpha_1$, 40kV, 20mA) and X-ray photoelectron spectroscopy (XPS, Mg $K\alpha$, 8kV, 30mA). Dehydration behavior of the ground products was examined by TG-DTA (10 K · min⁻¹). Morphology was observed by scanning electron microscopy (SEM, Hitachi, S4300). SSA was determined by a N₂-adsorption BET method.

3. RESULTS AND DISCUSSION 3.1 TG-DTA of the starting Co(OH)₂

Figure 1 shows the thermal decomposition behavior of $Co(OH)_2$. The thermogravimetric curve indicated the mass loss at 200°C, 210-430°C and 930°C. The initial decomposition process at 200°C was the dehydration associated with the oxidation of Co^{II} . An exothermic peak was observed at 204°C

and the determined mass loss $(\Delta W_{obs} = 10.1_9\%)$ agreed with the calculation, 10.78% on reaction (1).

$$2Co^{II}(OH)_2 + 1/2O_2 \rightarrow Co^{III}_2O_3 + 2H_2O$$
 (1)

The Co_2O_3 formed was instable and decomposed to Co_3O_4 at 210-430°C. The ΔW_{obs} , 13.64%, was almost equal to 13.90% for reaction (2).

$$3Co^{II}(OH)_2 + 1/2O_2 \rightarrow Co^{II}Co^{III}_2O_4 + 3H_2O$$
 (2)

 Co_3O_4 further decomposed to CoO above 930°C. This observation was referred to estimate the composition of the ground products.

3.2 Bond characteristics of the ground products

The XPS spectra of the ground products are shown in **Fig. 2**. For LC1 using Co_3O_4 , the La3d peaks (844.2 and 848.1eV) and O1s peak (534.2eV) were very close to those of La(OH)₃, and the Co2P peak was negligibly weak. This indicated the less interaction of Co_3O_4 and La(OH)₃ and the surface of Co_3O_4 covered by La(OH)₃. It was estimated that the pulverized Co_3O_4 was knead with the adhesive La(OH)₃. The La3d peak for LC2 and

Fig. 2 XPS spectra of ground products.

LC3 appeared at 845.2 and 842.0eV, which were a little higher energy than those for LaCoO₃. The Co3d peak for LC2 and LC3 (782.1 eV) was close to that of LaCoO₃ rather than Co(OH)₂. The O1s spectra also showed the E_B (531.7e for LC2, 532.2eV for LC3) close to LaCoO₃, Co(OH)₃ and La(OH)₂ However, the shoulder of O1s spectrum for LaCoO₃ was not observed. Then, the hydrated LaCoO₃, La,Co-hydroxide, or La,Co-oxyhydroxide were proposed as the structure of the ground products LC2 and LC3. The progress in reactions was suggested for LC3 because of the closer E_B of O1s peak to LaCoO₃.

The La3d and O1s XPS spectra for LC1 calcined at 400 and 700°C unchanged from those of the ground product, and the Co2p peak started to appeare at 400°C and increased at 700°C (Fig. 3). The La3d and Co2p spectra for LC2 and LC3 at 300°C unchanged from those of their ground products, but the O1s spectrum for LC3 showed the shoulder similar to LaCoO₃ at $E_B = 530$ eV. LaCoO₃ should form at the quite low-temperature of 300°C. At 1000°C, all the ground products showed the XPS spectra for LaCoO₃.

3.3 Crystallization of the ground products

The estimation from XPS was ascertained by XRD. Figure 4 shows the XRD patterns of the ground and calcined LC1. As estimated from the XPS results, the ground product was the mixture of La(OH)₃ and Co₃O₄. La(OH)₃ was dehydrated and crystallized to La₂O₃ at 600-700°C. The reflections of Co₃O₄ remained upto 700°C. However, the reflections for Co₃O₄ were evidently small against those of the mortar-mixed La(OH)₃-1/3 Co₃O₄, meaning the formation of the mixed hydroxide in part. The yield (Ψ) of the ground product was evaluated to be 43% by comparing the peak intensity of La(OH)₃ in LC1 to that of the mortar-mixed one. The ground products LC2 and

Fig. 3 Dependence of XPS spectra on calcination temp.

Fig. 4 XRD profiles of the ground products and calcined powders; \bigcirc : LaCoO₃, \diamondsuit : Co₃O₄, \checkmark : La(OH)₃, \triangle : La₂O₃.

LC3 contains small amounts of La(OH)₃. The yield (Ψ) for LC2 and LC3 increased to 87% and 88%, respectively. The ground products were amorphous at 300-500°C, crystallized to pseudo-tetragonal LaCoO₃ at 600°C, and converted to rhombohedral phase above 800°C without forming any by-product. These observations were consistent with the discussion on XPS spectra.

3.4 TG-DTA of the ground products

Figure 5 shows the TG-DTA curves of LC1, LC2 and LC3. The ground product LC1 showed the mass loss at 400 and 700°C. The observed mass loss (ΔW_{obs}) at 100-1000°C was 10.3₆%, which agreed with 9.01% for the following reaction (3) when considering a little hydration of Co₃O₄. The ground product LC2 and LC3 indicated ΔW_{obs} of 13.3₄% and 12.8₆% at 1000°C, respectively. These values agreed with ΔW_{cale} , 13.09% and 12.78%, for the reactions (4) and (5).

$$La(OH)_3 + 1/3Co_3O_4 + 1/12O_2 \rightarrow LaCoO_3 + 3/2H_2O$$
 (3)

$$LaCo(OH)_5 + 1/4O_2 \rightarrow LaCoO_3 + 5/2H_2O$$
 (4)

Fig. 5 TG-DTA curves of LC1, LC2 and LC3.

$$LaCoO(OH)_4 \rightarrow LaCoO_3 + 2H_2O$$
 (5)

The DTA curve for LC2 indicated the exothermic peak for the oxidation of Co^{II} to Co^{III} at 170°C. However it was not observed for LC3. The hydrogen peroxide doped into the grinding liquid oxidized Co²⁺ to Co³⁺ with low hydration affinity, then, leads the formation of oxyhydroxide (ΔW_{calc} =12.78%) rather than hydroxide. The LaCo(OH)₅ (LC2) and LaCoO(OH)₄ (LC3) formed amorphous LaCoO₃ at 400-600°C and crystallized at 641°C (LC2) and 609 °C (LC3) with about 2% mass loss.

3.5 Synthesis of PrCoO₃ and DyCoO₃

This mechanochemical process was applied to the synthesis of $PrCoO_3$ and $DyCoO_3$. Figure 6 shows the XRD patterns of the ground product and the calcined powders for Pr_6O_{11} -Co(OH)₂ system without doping H_2O_2 . On the synthesis of praseodymium ferrite $PrFeO_3$, Pr_6O_{11} , shows poor reactivity with FeO(OH) under grinding, and the XRD reflections of Pr_6O_{11} remained even at 700°C [3]. It was considered that the high stability

Fig. 6 XRD profiles for Pr_6O_{11} -Co(OH)₂ system.

as oxide, that is the low affinity to hydration, of Pr^{IV} was the reason for the poor reactivity. So, when the Co^{II} can reduce the Pr^{IV} to Pr^{III} , there is a possibility to progress the formation of hydroxide or oxyhydroxide. The XRD patters of the ground product PC indicated only the small reflections of $Pr(OH)_3$ and no reflections from Pr_6O_{11} . The mass loss value (ΔW_{obs} =12.17%) was comparable to the calculated value (ΔW_{calc} =12.69%) for the oxyhydroxide, $PrCOO(OH)_4$. The yield of $PrCOO(OH)_4$ in the ground product (Ψ) was obtained to be 88% from the peak intensity of $Pr(OH)_3$. The overall reaction can be represented as the following equation.

$$1/6Pr^{III}_{2}Pr^{IV}_{4}O_{11} + Co^{II}(OH)_{2} + H_{2}O + 1/12O_{2}$$

 $\rightarrow Pr^{III}Co^{III}O(OH)_{4} (6)$

The small amount of O_2 required in (6) would be supplied from the ambient atmosphere under grinding or calcination. Tetragonal $PrCoO_3$ was successfully synthesized above $600^{\circ}C$.

Another example of the application was the synthesis of $DyCoO_3$. The dysprosium ferrite, $DyFeO_3$, is one of the most easily synthesized materials in the series of $LnFeO_3$. However, contrary to the Pr_6O_{11} - $Co(OH)_2$ system, the reactivity in Dy_2O_3 - $Co(OH)_2$ system markedly degraded. The reflections for Dy_2O_3 were observed in the grinding product and their intensity increased with the raise in temperature. The reason for the poor reactivity of DC was unclear; however, the addition of the oxidant should be needed.

3.6 Morphology of ground and calcined LC2, PC, DC

The SSA and morphology of the ground and calcined powders are sited in **Table 1** and **Fig. 8**. The SSA of the ground products decreased with the increase in reactivity except DC. The SEM photographs in Fig. 8 showed the agglomeration. This was strongly related to the mechanism expected, where the adhesive $Ln(OH)_3$ colloids were used as the reactive grinding aid.

Fig. 7 XRD profiles for Dy₆O₃-Co(OH)₂ system.

Table 1.	Specific surface area (SSA) of the ground
	and calcined nowders

and carefied portacio							
	Ground	round Calcined powder			er		
		400°C	700°C	800°C	1000°C		
LC1	47.5	42.8	6.9	5.3	1.000		
LC2	23.9	13.2	3.9		1.4		
LC3	17.9	11.4	6.9	5.1	-		
PC	12.2	10.2	3.0	-	1.7		
DC	11.7	8.7	5.2		1.3		

Fig. 8 Morphology of ground products.

4. CONCLUSION

The mechanochemical process is successfully applied to the synthesis of LaCoO₃. The ground products obtained from La₂O₃ and Co(OH)₂ are amorphous complex hydroxide and converted to prseudo-tetragonal LaCoO₃ at 600°C and rhombohedral one above 800°C. The addition of H₂O₂ to the grinding liquid results in the oxidation of Co^{II} to Co^{III} to contribute the formation of oxyhydroxide, LaCoO(OH)₄, which can be dehydrated to amorphous LaCoO₃ at 300°C. The reduction activity of Co^{II}(OH)₂ enables the formation of PrCoO₃ from Pr₆O₁₁, but makes the synthesis of DyCoO₃ difficult.

Refferences

- S. Kaliaguine, A. Van Neste, V. Szabo, J. E. Gallot, M. Bassir and R. Muzychuk, *Applied Catalsis A*: General, **209**, 345 (2001).
- [2] M. Popa, J. Frantti, M. Kakihana, Solid State Ionics, 154-155, 135 (2002)
- [3] O. Abe, N. Mantoku, T. Yamada, S.Mitachi, Trans. Mater. Res. Soc., Jpn., 32, 123 (2007).
- [4] O. Abe, N. Mantoku and S. Mitachi, Proc. Int'l. Symp. on Synergistic Effects of Mater. and Processing, Kumamoto, Japan (2006) pp.7-10.
- [5] M. Koike and O. Abe, *Solid State Ionics*, **172**, 217 (2004).
- [6] O. Abe, M. Koike and R. Umezawa, J. Powder Technol. Jpn., 42, 199 (2005).

(Recieved :January 15, 2008; Accepted June 20, 2008)