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Recent experiments on trapping cold Fermi on droplets 4°K, in a harmonic well use a mixture of these atoms 
in two different hyperfine states. Depending on the density and the strength of the interaction, we have 
investigated the possibility of phase separation between these two components by using the density 
functional theory and the Monte Carlo technique. The static analysis reveals a second order phase transition 
as the density or the coupling is increased. Also, by using the Monte Carlo method, the total density 
functional energy has been minimized and the structure of the droplet has been obtained as a function of the 
dimensionless coupling strength. For large couplings the system displays a clear phase separation, whereas 
for intermediate ones, still above the instability point, we see a spinodal decomposition of the droplet. 
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1. INTRODUCTION 
Recent realizations of two[ 1 ,2] component alkali Bose
Einstein condensates (BEC's) in a trap provide us with 
new systems to explore the physics in otherwise 
unachievable parameter regimes[3,4,5]. Dramatic 
results were recently observed in the phase segregation 
dynamics of mixtures of Rb[ 1 ,2] gases. Periodic spatial 
structures were found at intermediate times which then 
recombine at a later time. 

Phase segregation phenomena have been much studied 
in materials science and these can be understood using 
classical mechanics. These were explained in terms of a 
concept called spinodal decomposition[6]. When a 
system is quenched from the homogeneous phase into a 
broken-symmetry phase, the ordered phase does not 
order instantaneously. Instead, different length scales set 
in as the domains form and grow with time. It has been 
shown for trapped bosons[7] that it is possible to have 
an analogous spinodal decomposition, which manifests 
some of the phenomenology including a periodic spatial 
structure at an intermediate time that is now determined 
by quantum mechanics. The time scale provides for a 
self-consistent check of the theory and is consistent with 
the experimental results[2]. The growth of domains at 
later times is determined by quantum tunneling and not 
by classical diffusion. Recently, it became possible[8] to 
cool a single component system of about a million 4°K 
fermionic atoms in a magnetic trap below the Fermi 
temperature, T F leading to the realization of a spin
polarized fermion gas of atoms. Similar to electrons in a 
solid, the dilute gas of atoms fills all the lowest energy 
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states below the Fermi energy, EF. The transition to this 
quantum degenerate state is gradual as compared to the 
abrupt phase transition into a Bose condensate. For 
single component fermionic systems, however, the 
equilibrium is difficult to achieve as the s-wave elastic 
collisions are prohibited due to Pauli exclusion principle. 
In the experiments of DeMarco and Jin[8], this was 
circumvented by using a mixture of two nuclear spin 
states of 4°K atoms for which s-wave collisions are 
allowed. One of the manifestations of quantum 
mechanics was the nature of momentum distribution 
which differed from the well known classical gaussian 
distribution. This system corresponds to what we called 
the weak coupling limit in that the physical properties 
are close to that of a non-interacting fermion gas. The 
other system which is being explored[9] is the gas of 6Li 
atoms. From theoretical point of view, the 
thermodynamic properties and the density and 
momentum distributions of a spin-polarized Fermi gas 
in a harmonic trap have been studied[10,11,12]. Butts 
and Rokhsar[lO] have obtained universal forms of the 
spatial and momentum distributions for a single 
component spin-polarized non-interacting fermion gas 
using the Thomas-Fermi (TF) approximation. Bruun 
and Burnett[12] have studied an interacting fermion gas 
of 6Li atoms which have a large negative scattering 
length which could also lead to the possibility of 
superfluidity. In the present paper, we consider mixtures 
of finite systems of ultracold fermionic atoms with a 
positive scattering length in both weak and strong 
coupling limits and explore its ground state using the TF 
approximation, and Monte Carlo simulations. 



1102 Phase Separation in Fermion Droplets 

2. MODEL AND CALCULATION METHOD 

We first start with the statics of a two component 

fermion gas of atoms with masses ml and m2 and 

particle numbers NI and N2. This is assumed to be 

confined in an azimuthally symmetric harmonic trap 

with radial and axial frequencies ro and A.ro, respectively 

which are considered to be the same for both the 

components. Unlike the electron gas in matter, the 

fermion gas of atoms is neutral and dilute. The 

significant interactions between atoms are, therefore, 

only short-ranged and these would be responsible for 

any phase segregation in the system. In the long 

wavelength limit, the system can be well described by 

density functional theory and the total energy can be 

written as: 

E = J["L,EoaCPa)+ gplpz] dr Here 
()" 

h. 2 1 
Eoa =-

2
-ra(r)+-mam2(x2 + y 2 +A?z 2 )pa(r) 
ma 2 

IS the non-interacting part of the energy density and 

p a (r) is the particle density of the component o=l ,2 

with J p a (r) dr = N a . The interaction term has been 

approximated by the contact potential g o(r-r'). g is 

related to the scattering length a by g = 2Jrn 2 a 1 m, 
with m= m1 m2 / m1 + m2 • In accordance with the 
experiments, we take a to be positive and consider here 

only the s-wave scattering. Therefore, the contribution 

to the interaction term is non-zero only when the species 

are different or are in different hyperfine states as in 

experiments. From the exclusion principle, there is no 
contact interaction between particles of the same 

species( spin). For the kinetic energy density 't
0

, we use a 

local approximation including the first and second 
derivatives of the particle density, 

ra(r) =~(6nz)z'3 p 513(r)+_!_) V p" )
2 

5 " 36 Pa 
The first term represents the Thomas-Fermi (TF) 
approximation to the kinetic energy. The second term 

represents the gradient correction to the kinetic energy. 

Monte-Carlo results confirm that the gradient term is at 

least 2 orders of magnitude smaller than the TF term, 

but this term is important in that it can break the 

symmetry of the ground state and lead to lower energy 

asymmetric states. Without the interaction term (g), the 

system behaves in the same fashion as the one 

component system. In this case, Butts and Rokhsar[IO] 

obtained EF to be related to the total particle number N 

by E F = nm( 6).N) 113 and the density profile at T=O is 

given by Pnon-interacting (r) = Po[l-(; / RF ) 2 
]

312 

RF gives the characteristic size of the gas. In the TF 

approximation, the trapping potential can be treated to 

be locally constant and we can define a local Fermi 

wavevector, kp(r), and the density at T = 0 can be 

written as Pnon-interacting (r)= kp\r)/6 1t
2

• 

We now examine the properties of the mixed (two

component) system in the presence of interactions. The 

strength of the coupling, which controls the phase 

segregation, depends on the dimensionless parameter 

which is the ratio between the interaction and the kinetic 

energies, namely m g p1131h2 or simply c=kF a/1t. For a 

general two-component system with chemical potentials 

~I and ~2, the ground state is obtained by minimizing 

the new potential 

Q = E-J f.lJPJ + f.lzPz dr · 

Similar to the one-component case, one can rewrite the 

results of the minimization in a dimensionless form by 

introducing for each of the species s, the following 

quantities: Ra=[2 ~Jm0ro2] 112, Kp0=(6 1t2 Pa)l/3, g0 = g 

Pcr·ol~"' and n"(r)=pa(r)/p00 .Here Pa0 is the density of 
the component cr in the absence of interactions, and cr' 
=3- cr. If one neglects the smaller terms containing 

derivatives of the density (the TF limit), one obtains the 

following algebraic eq11ations satisfied by the 

dimensionless densities nl and n2 for any coupling 

strength g" : 

The effect of the additional & n0 • term is to deplete 

regions of large n". (without necessarily leading to a 

phase segregation). When there is phase segregation, the 

interface energy is proportional to the square root of the 
coefficient of the gradient term, and it often serves to 

distinguish different configurations. In that case, their 

effect cannot be neglected and these are included in the 
Monte Carlo simulations. We next discuss some special 

cases in the TF limit. 

TF Limit· gl-g2-u For Any Coupling 

In this case g1=g2=g. The above equations are cubic and 

therefore admit 3 roots, one is equal densities (nl=n2). 

If a solution n2=f(n 1) exists, by symmetry, the other one 

is necessarily nl=f(n2). The real solutions are plotted in 

Fig. 1, where the physical nl=n2 solution is referred to 

as "Sym", and the other conjugate (asymmetric) 

solutions are referred to as "AI" and "A2". Below we 

discuss these solutions in the weak and strong coupling 

limits. 
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Figure 1. Dimensionless density versus dimensionless 
radius r/R for g==l. One of the asymmetric solutions 
(A2) is depleted at the center while the other one has a 
large concentration. For r/R larger than 0.51 both 
asymmetric solutions join the symmetric density profile. 
The sharp features around this point are due to the 
neglect of the gradient terms. 

The solutions will all be axially symmetric in that they 
are functions of r only. In actuality, the axial 
symmetry can also be broken, but we do not find it here 
since we neglected the terms in gradient of the particle 
density in the kinetic energy. The broken symmetry 
solutions will be discussed in the 
results from the Monte Carlo simulations where these 
terms were kept. In Fig. 1, the bifurcation point where 
the asymmetric solutions start to occur corresponds to == 
n g3 == 0.296, which separate the strong coupling regime 
from the weak one. At the bifurcation point, we have 
gn 113 =2/3. Since g=(Kpa)4/31t, we find a critical 
dimensionless coupling c=(Kpa/1t)c=0.646. We shall 
come back and compare this value with that obtained 
with a different approach below. 

TF Limit: Linear Instability Analysis 
We next study the fluctuations of the system about its 

equilibrium configuration in the TF limit by expanding 
the thermodynamic potential Q up to second order in 
the particle density variation l)p about its minimum 
which was computed above. The sign of the second 
derivative of n will decide the stability of the 
symmetric phase. A phase segregation occurs when the 
second derivative ceases to be positive definite. If the 
transition is first order, it would have already occurred 
before reaching a negative second derivative. In this 
case, the second derivatives of Q lead just to a 2x2 
matrix. The phase instability criterion is o have a zero 
eigenvalue. In the symmetric case (J..Ll=J.12; pl=p2), the 
instability will first occur locally at the point where the 
relation g n 113= 2/3 is satisfied. This implies that 

n==0.296. This is exactly the critical ne obtained earlier 
from the minimization of the potential n. These two 
instabilities occuring at the same point suggest that, 
within the adopted model (TF), the transition might be 
of second order. 

General Case: Monte Carlo Results 
The density dirstibution that extremizes the energy 
functional Q can be obtained by a Monte Carlo 
simulation with a weighting factor exp(-E/T) for a 
parameter T that is sufficiently low. This is basically the 
simulated annealing method and has been exploited 
successfully in earlier treatment[?] of the corresponding 
Bose system described by a Gross-Pitaevski functional. 
The derivative term is approximated by a finite 
difference calculated on a cubic mesh. For simplicity, 
we show here results for the case when the two 
components have the same mass. We first show in Fig. 
2 the density profile of component 2 as a function of x 
and y for z=O for the weak coupling case with no phase 
segregation. The values of different parameters were 
chosen to be ro=l35x21t rad/sec, a==l35 a8 ohr• A.==O.l4, 
and Nl==N2=106 (lll=J.l2=1.626 10·29 J); roughly 
corresponding to the experimental parameters of the 4°K 
system\cite { demarko}. In these experiments, we 
estimate Kpa/1t=0.032. The density profile for the other 
component is the same and hence is not shown. 
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Figure 2: density profile in the weak coupling limit 

(c==0.032) 

In the limit of strong interaction, phase segregation 
starts and as mentioned earlier, the system can now also 
break cylindrical symmetry. This happens when c is 
large enough, which in turn can be achieved with only 
large Kp, only large a, or both. To illustrate this, we 
show in Fig. 3 the density profiles for components 1 and 
2 for the case of a=30000 a8 , J.ll=J..L2=1.86 10'30 J, and 
ro=300 radlsec. In this case, c= Kpa/n==2.39. 

1103 
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Figure 3: density profiles of the two components in the 

large coupling limit (c=2.39). There is clearly a phase 
separation. 

The difference in the densities of the two components 

shows that the largest change occurs near the center 

where the density is maximum. It is to be further noted 

that for this case, the density distribution is still quite 

cylindrical but there is a slight asymmetry, as we have 

noticed in the graph of the difference. This asymmetry 

becomes more pronounced as the interaction Is 

increased further. 

3. CONCLUSION 

In conclusion we have investigated the statics of the 

spatial phase segregation process of a mixture of 

fermion atoms in a harmonic trap using the density 

functional theory. As the coupling starts to increase, 

even with the same chemical potential, equilibrium 

distribution with unequal densities starts to appear, 

which quite often does not exhibit axially symmetric 

correlations. 
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