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Natural arrays of Josephson junctions are constructed in High-Tc cuprate superconductors like 
BizSrzCaCu20s+y· In the junction arrays a unique excitation called Josephson plasma occurs. By 
applying an external magnetic field parallel to the Cu02 plane, the Josephson vortices are intro­
duced into the sample. When an external current flowing along the c-axis drives vortices, they 
move very fast along the ab-plane, since the Josephson vortex has not a normal core in contrast to 
the usual Abrikosov vortex. In certain values of external current and magnetic field, the moving 
Josephson vortices resonate the Josephson plasma waves, leading to some transformations between 
different vortex lattice configurations and radiations of electoramagnetic wave. Especially, when a 
rectangular vortex lattice aligned along the c-axis appears, a superradiant state of electromagnetic 
wave can be expected to appear. This phenomenon is quite useful for an electromagnetic wave 
generation in Tera-Herz high frequency range. 
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I. INTRODUCTION 

Cuprate High-Tc superconductors are layered materi­
als composed of Cu02 superconducting layers and other 
block layers. Therefore, some materials among them 
show strong anisotropy for the electron conduction along 
the a-b plane and the c-axis direction. A typical example 
of High-Tc materials exhibiting such strong anisotropy is 
Bi2Sr2CaCu20s+y (Bi-2212). In Bi-2212, the block lay­
ers work as insulating layers and the neighboring double 
Cu02 layers are coupled by the Josephson effect. Thus, 
Bi-2212 constructs a natural array of Josephson junc­
tions and is called an intrinsic Josephson junction. In 
fact, Kleiner et al. [1] and Oya et al. [2] independently 
observed Josephson effects themselves in the single crys­
tals of Bi-2212. In the intrinsic junction systems, there is 
a question whether all the junctions can synchronize each 
other in their oscillating states. If it is accessible in a wide 
frequency range, it means that the system is quite useful 
as an electronic oscillators. Therefore, the synchroniza­
tion is the important issue when the intrinsic Josephson 
junctions are considered for electromagnetic devices. In 
this paper we discuss the synchronization phenomena un­
der an external magnetic field applied parallel to the a-b 
plane and the transport current applied parallel to the c­
axis. In the intrinsic Josephson junction, there exist two 
types of excitations in terms of dynamics of the super-

conducting phase. The first one is the Josephson plasma 
mode which is an oscillating wave propagating inside the 
sample [3] and the second one is the Josephson vortex 
[4]. Theoretically both of the first and the second excita­
tions can be decribed as linear and non-linear solutions in 
the basic equation describing the dynamics of the phase 
difference between neighboring superconducting layers, 
respectively. In a single Josephson junction system in 
which the Sine-Gordon equation is a good description in 
studing the dynamics of the phase difference, the Joseph­
son plasma mode corresponds to a plane wave solution of 
the linerized Sine-Gordon equation, while the Josephson 
vortex is given by a soliton solution in the Sine-Gordon 
equation [5]. In the intrinsic Josephson junction, both 
the excitations are expected to be more complicated. For 
example, the Josephson plasma wave can propagate even 
along the junction stacking direction [6], that is, the c­
axis, in addition to the junction a-b plane, while the 
Josephson vortices form a two dimensional lattice con­
figuration [7] in contrast to a simple linear chain in the 
single junction. 

In general, there is a resonant phenomena between the 
Josephson plasma and the vortices in Josephson junc­
tion systems. It has known in the single Josephson junc­
tion that when the speed of the driven vortices matches 
with the propagation velocity of .the Josephson plasma 
wave the resonance between them occurs and the emis-
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sion power of the electromagnetic wave becomes a maxi­
mum [5]. Therefore, it has been the most important phe­
nomenon from a point of view of electromagnetic wave 
emission and has been intensively investigated theoreti­
cally and experimentally not only the conventional sin­
gle junctions but also intrinsic Josephson junctions. As 
a result, the existence of some resonant behaviors [8] and 
the important phenomena, that is, the superradiant state 
[9], [10) in which collective vortex motion resonantes with 
the highest plasma mode and most of stacked junctions 
simulatenously synchronize have been found in intrinsic 
Josephson junctions. Espeically, direct numerical simu­
lation by one of authors(M.M) clearly revealed that the 
superradiant state might appear over an accessible wide 
range of 1-V characteristics [1 0). In this paper, we show 
the numerical results on those resonant flux flow states 
and review how the electromagnetic emission occurs re­
lated with those resonant states. 

II. MODEL EQUATION AND JOSEPHSON 
PLASMA MODES 
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FIG .1 A schematic view of layered cuprates. Cooper 
pairs and quasi-particles tunnel between neighboring 
(double) Cu02 layers. Those tunnel currents couple with 
electromagnetic field inside the insulating layer and form 
the Josephson plasma wave as an elementary excitation. 

In layered High-Tc superconductors, a model in which 
the superconducting Cu02 layers are electronically linked 
by the Josephson coupling through block layers has been 
confirmed by many experiments [1], [2]. Figure 1 shows a 
schematic view of the layered cuprate superconductors. 
When the phase difference between neighboring Cu02 

layers exists, the Josephson current flows along the c­
axis and couples with the electromagnetic field inside di­
electric layers. Since the phase difference is of a wave 
like, we call the wave Josephson plasma. An oscillating 
Josephson current always flows parallel to the c-axis, and 
therefore, the Josephson plasma waves can be classified 
into the longitudinal(propagation along the c-axis) and 
the transverse plasma(propagation along the ab-plane) 
waves respectively, depending on the directions of the 
wave propagation. Now, let us show the formulation for 
describing those plasma waves. The total current flowing 
along the c axis between £-th and £ + 1-th double layers 
is given by 

. . . Cc 8Et+l e ( ) 
Jt+l,l = )cSWif't+l,l + UcEt+l,l +-;----at- 1 

where Uc and cc is the quasi-particle conductivity and 
the dielelctric constant along the c-axis in the insulat­
ing layer, respectively. In Eq.(1) lf't+l,t(= Bt+l -Be­
!: J,t+l dzAz) is the gauge invariant phase difference be­
tween the £-th and £+ 1-th layers, Be being the phase at 
the £-th layer, t/Jo the unit flux, and Az the z component of 
the vector potential. The right hand side of Eq. ( 1) shows 
that the first term is the Josephson current, the second 
term the quasiparticle current, and the third term the 
displacement current. We notify that it is necessary to 
care the charge dynamics since the superconducting layer 
is atomic-scale and comparable to the charge screening 
length ("' A) in layered cuprates as shown in Fig.l. In 
such a situation, the charge screening inside only a su­
perconducting layer becomes not enough and the charge 
neutrality is dynamically broken [11) inside each super­
conducting layer by the electron tunneling as shown in 
Fig. I. In order to take account of this effect, we intro­
duce the charge density Pl in the L'-th superconducting 
layer expressed as 

(2) 

where tt is the De bye screening length and A~ is the scalar 
potential in the L'-th superconducting layer. Next, we de­
rive basic model equations for the phase difference and 
the charge density. Here, for simplicity, we confine our­
selves to x-z two dimension space, where x is one of the 
ab-plane direction and z the c-axis direction as shown in 
Fig. I. Inserting both the current (Eq.(1)) and the charge 
density (Eq.(2)) into the Maxwell equations and using 
the Josephson relations, we obtain the general coupled 
equations for both the phase difference and the charge 
density [12], 
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at' at' + A.cD Pt - A.c Pe 

(:3)' 

(4) 

where s( D) is the thickness of the superconducting (in­
sulating) layers, Aab(A.c) is the penetration depth in the 
ab-plane (c-axis), .B :::: 4~~c is related with McCum-

ber parameter f3c as f3c :::: 1/,82, and the operator ~ (Z) 

stands for a second difference defined as ~(2 ) fe+ 1,e = 
fc+Z,l+1 + ft,e-1 - 2ft+l,t· In both equations time t, 
coordinate x, and the charge density pc are, respectively, 
normalized with ...L, Ac, and~ where wp(= ~ ), Ac, 

Wp AcWp y Ec/\c 

and jc are the plasma frequency, the penetration depth 
along the c axis, and the c-axis critical current denisty, 
respectively. Basically, those equations can describe in­
trinsic Josephson effects in layered cuprates, however two 
more simplified equations have been so far employed due 
to their simple forms. The first one is a model equa­
tion derived by Koyama and Tachiki [6] and is applica­
ble only for the longitudinal dynamics of the supercon­
ducting phase (It can be derived under a condition as 
A ab --+ 0 in Eq. ( 3) and ( 4)). This is valid enough only 
when the phase difference is homogenious along ab-plane 
and the condition is considered to be realized in cases 
under no applied magnetic field. \Ve note that the model 
can reproduce multiple-branch structures commonly seen 
in I-V characteristics along the c-axis in layered cuprate 
single crystals and can describe the dynamics of the lon­
gitudinal plamsa [11]. The another one is called "coupled 
Sine-Gordon(CSG) equation" [13], [14] and is derived 
from Eq.(3) and (4) when the dynamical charge neutral­
ity breaking effects are dropped (p, --+ 0 in Eq.(3) and 
( 4)). This condition is valid enough for cases under the 
presence of the layer parallel magnetic field (A ab > > Jl). 
Thus, the CSG equation has been regarded as the most 
basic equation which can describe dynamics of both the 
Josepshon vortex and the plasma wave. In the rest of 
paper, we deal with only the CSG equation to concen­
trate on vortex dynamics and related plasma excitation. 
Now, let us return to the general equations Eq.(3) and 
(4), again. For obtaining the solution of the Josephson 
plasma, we make a liner approximation for Eqs. (3) and 
( 4), since the amplitude of the phase is small. By solv­
ing the equation we obtain the frequency dispersions for 
the transverse and longitudinal plasmas are, respectively, 
obtained as 

(5) 

Those dispersion relations are schematically shown in 
Fig.2. We note that the dispersion of the transverse 
plasma is much stronger than that of the longitudinal 

plasma. This difference comes from the fact that the 
transverse plasma is a composite wave of the Josephson 
current and the electromagnetic field and asymptotic to 
that of the electromangetic wave inside the junction isu­
lating medium while the longitudinal plasma is a coupled 
wave of the Cooper pair density and only the electric 
field. Experimentally, the transverse plasma has first ob­
served by Tamasuku et al. by measuring the plasma edge 
in reflectivity measurements of La2-xSrxCu04 (15]. The 
longitudinal plasma has first measured by Matsuda et al. 
by measuring a sharp absorption peak in microwave mea­
surements of Bi-2212 [16]. Although we confine ourselves 
two special modes propagating along the c-axis direction 
and the ab-plane, the Josephson plasma wave can prop­
agate in any direction as shown in upper panel of Fig, 
2. Then, the waves generally become mixtures of the 
transverse and longitudinal waves and their dispersions 
appear in the region shown by the hatch in Fig 2. 
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FIG .2 A schematic view of dispersion relations for lon­
gitudinal w;(kz) and transverse plasma modes w~ (kx)· 
Upper panel:the longitudinal mode propagates along the 
c-axis while the transverse one does parallel to ab-plane. 
When the propagating direction is inclined from those 
two special directions (dashed arrows) its dispersion lies 
in the hatched region depending on the propagating di­
rection. 

Next, let us consider about Josephson plasma modes 
in finite systems since the Josephson plasma modes de­
scribed above are ones for infinite system. In fact, real 
samples in which many experiments in terms of vortex 
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dynamics are performed are composed of finite stacks of 
junctions, and therefore, the number of modes excited 
inside the sample are limited within finite number. Here, 
for simplicity, we give the dispersion relation of the ex­
cited plasma in a finite system by using the following 
CSG equation [14] expressed as 

\ 2 ~ ~. A2 
+~(u 'f'£+2,C+1 + u 'f't,l-1 _ 2 u 'f'H1,t) 

sD ot' 2 ot'2 8t' 2 

f3
Aab

2
(0'f't+2,l+1 + O'f't,t-1 _ 28'f'l+U) 

+ sD ot' ot' ot' 
(7). 

This equation gives the following dispersion relation for 
a stack system composed of N junctions, 

1 
A~k~ 

+ >. 2 ' 1 + ~(1- cos(~)) sD N+1 
(8) 

where N is the number of stacked junctions and n means 
the n-th mode among the modes ranged from 1 to N. 
Here, it should be noted that the dispersion relation is 
derived from a boundary condition in which 'f'e+ 1,e in 0-
th and N+1-th junction sites is set to be zero in Eq.(7) 
due to no presence of the junction at those sites. In such 
a condition, the c-axis propagating components form the 
standing waves along c-axis, and therefore, only the dif­
ference between modes is distinguished by their c-axis 
standing wave profiles as schematically depicted in the 
upper panel of Fig.3. The dispersions of those modes can 
be schematically illustrated inside the hatched region in 
the Fig.3, where the longitudinal plasma and the trans­
verse plasma modes are also given for a comparison. In 
the dispersion relations it is found that the n = 1 mode 
gives the most dispersive relation while the n = N mode 
is almost close to that of the longitudinal plasma. The 
n = 1 mode has no node inside junction as seen in the left 
hand side of upper pannel of Fig.3, while n = N mode has 
N-1 nodes. Therefore, the excitation of the n = 1 mode 
is the most important point. If the Josephson vortices 
resonate with the mode, then the Josephson vortices are 
considered to form a almost rectangular lattice shape. 

----• Propagating Direction 

•• 
Transverse Plasma 

Plasma for Finite Stack 

n=N-1 
n=N 

Longitudinal Plasma 

FIG.3 A schematic view of dispersion relations for the 
Josephson plasma standing wave modes in finite stack 
system w(n)(kx)(n = 1 ~ N) Those dispersions are 
located inside the hatched region. The most dispersive 
mode is n = 1-th mode while the most fiat one is n = N­
th one. The dipersion relations of the longitudinal and 
the transverse mode are also dipcted for a comparison. 

Ill. INTERACTION BETWEEN VORTICES AND 
JOSEPHSON PLASMA 

On an external magnetic field parallel to the ab-plane, 
the field penetrates into the sample in a form of Joseph­
son vortex. The Josephson vortex is a non-linear solu­
tion of a set of Eqs. (3) and ( 4) and the CSG equation. 
Since the center of the vortex is situated in the block 
layer, the vortex has no normal core, instead only a cur­
rent core. The magnetic field of the Josephson vortex 
extends over Aab from the vortex center along the c-axis 
and over Ac along the a-b plane. Since Ac is much longer 
than Aab, the magnetic field distribution has a shape of 
very fiat ellipsoid extending in the direction of the a-b 
plane [4]. The Josephson vortices have no normal core 
and thus the pinning force and the friction force acting 
on the vortices are very week [4]. When the vortices are 
driven by an external current flowing along the c axis, its 
speed attains up to 106 m/sec. The vortices moving with 
such a high speed strongly interact with the propagating 
plasma modes [1], [10], [17]. Moreover, since there are 
many modes propagating with different speeds depend­
ing on the c-axis profiles of the standing waves in finite 
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intrinsic Josephson junction systems, they have some res­
onant points and therefore, take various kinds of vortex 
lattice configurations according to the intensities of ap­
plied current and magnetic field [10], [17]. To investigate 
this phenomenon, we numerically solve the CSG Eq.(7). 

A. Numerical.Simulations of the Coupled 
Sine-Gordon Equation 

FIG.3 A schematic view for undertaking simulations 
The periodic boundary condition is employed along the 
ab-plane direction. 

Since both the Josephson plasma waves and the 
Josephson vortices can be described by the Eq.(7), the 
equation show that the moving vortices strongly interact 
with the Josephson plasma when the both move with a 
same speed [17]. This means that the moving vortices 
excite the Josephson plasma and consequently lead to 
an emission of electromagnetic wave. In numerical sim­
ulations of Eq.(7), we employ the periodic condition in 
the a-b plane direction as seen in Fig.3. This is because 
we wish to eliminate finite system size effects along the 
a-b plane in order to study fundamental resonant be­
havior between the Josephson plasma and the Joseph­
son vortices. However, it should be noted that the open 
bounday condition is imposed along the c-axis and the 
excited plasma waves form the standing wave along the 
c-axis(See Eq.(8)). The computer simulations are per­
formed in a two dimensional rectangular shape in which 
the size in the ab-plane are taken 10 mm and 40 junc­
tions along the c-axis are stacked. This corresponds to 
a typical sample size in which the Josephson vortex dy­
namics are experimentally investigated. For the bound­
ary condition for the surface of the top and bottom of 

the sample, an external current is uniformly flow in and 
out, respectively. Now, let us show the simulation results. 
The typical simulation result for the current-voltage (I­
V) characteristics is shown in Fig.4(1) in which some step 
like strucutres representing the existence of the resonance 
can be found. The typical snapshots of the flux flow 
states are shown in Fig.4 (a), (b), and (c). The horizon­
tal lines in Fig.4(I) stand for the current values in which 
those snapshots are taken, while the vertical lines rep­
resent resonant points between moving vortices and the 
plasma waves estimated from taking kx = Ha (the applied 
field) in Eq.(8) [18]. From those figures it is found that 
the vortices form a conventional triangular lattice for a 
low voltage region before the first step structure appears 
in the I-V characteristics. \Vhen the current is increased 
from the triangular lattice flow state, the flow vortex con­
figurations are changed as seen in Figs. 4(b) and 4(c). 
Those changes come from resonant phenomena between 
vortices and some different Josephson plasma [8], [10], 
[17]. We notify that the transitions between those dif­
ferent flow patterns are found to occur at the step like 
structures in the I-V characteristics by monitoring the 
vortex flow configurations. Among those many patterns 
we especially notify that an almost complete rectanglar 
flow configuration like Fig.4( c) is stable between the two 
resonant voltage A and B in Fig. 4( 1) and the region 
between them is relatively wider than other regions [10]. 
This is because resonant points as seen in Fig.4(I) are 
relatively sparse in the region between the points A and 
B. In this state the wave length and propagating veloc­
ity of the excited plasma wave are equal to the distance 
between the neigh boring vortex in the same junction and 
the vortex velocity, respectively. This kind of the res­
onant state is called a superradiant state because the 
dynamics of the superconducting phase difference are co­
herent in almost all juncitons and strong emissions are 
expected. In other words, that is a state that the high­
est plasma having no node along the c-axis is excited by 
the vortex motion. \Vhen a composite wave composed 
of the vortices and the plasma excited in this way goes 
out of the sample, a part of the wave is simply converted 
into the electromagnetic wave. Theoretical estimations 
for Bi-2212 predict that the power excited inside junc­
tion sites can reach up to order of 100mW/cm2 [17] and 
the frequency range is in a Tera-Herz region [10]. If the 
excited wave is efficiently converted into external elec­
tromagnetic wave, the intrinsic Josephson junction will 
be a quite useful Tera-Herz wave generator. Experimen­
talists are now making various kinds of experiments for 
confirming this prediction 
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FIG .4 (I) The I-V characteristics. The vertical lines are resonant volt ages estimated from the dispersion relation 
Eq.(S)) and the horizontal lines mean the current values in which the following snapshots (a) (b) and (c) are measured. 
'he modes assigned as A and B correspond ton= 1 and n = 2 modes in the dispersion relation, respectively. (a),(b), 
nd (c) A snapshot of vortex centers and sintp in each junction site. 

IV. SUMMARY AND CONCLUSION 

In this paper we theoretically show that Josephson vor­
ices driven by the transport current can exhibit the su­
•erradiance by finding numerically that the rectangular 
ortex lattice flow state essential for the superradiance is 
table in a wide range of the 1-V characteristics. Further­
lore, by changing the transport current and the applied 
:~.agnetic field, the frequency can be almost freely tunned 
ver a wide range. Especially, under the high magnetic 
eld(~ T) we found that the frequency reaches to a THz 
ange. In the future, we believe that if the superradiance 
; experimentally confirmed intrinsic Josephson junctions 
hould be one of the most important device application 
1 HTSC's materials. 
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