Electrical and magnetic properties of magnetite films prepared by ferrite plating

Y. NAKAYAMA, T.ISHIKAWA, Y. KITAMOTO, and M. ABE

Department of Physical Electronics, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 Fax: 81-03-5734-2906, e-mail: ynaka@pe.titech.ac.jp

This paper describes the magnetoresistanace (MR) effect of magnetite (Fe₃O₄) films prepared by the ferrite plating. We investigated the dependence of magnetic and electrical properties on the concentration of the oxidizing agent C_{ox} . While saturation magnetization M_s decreased, resistivity and MR ratio increased with increasing C_{ox} . The MR ratio reached 5.5%. The ratio of Fe²⁺ ions to Fe³⁺ ions in the films decreased with increasing C_{ox} resulting in the increase in the resistivity and the MR ratio. The electrical transport was attributed to spin-dependent tunneling between Fe₃O₄ grains through insulating regions in the grain boundaries.

Key words: magnetoresistance, magnetite, ferrite plating

1. INTRODUCTION

Magnetoresistance (MR) has been attracting many interests, in researchers' particular, regarding applications to reproducing heads for hard disk drives While physical vapor deposition and memories.¹ methods such as sputtering have been used in almost all of studies about magnetoresistance of magnetite films, there are no studies on magnetite fabricated by plating. Since the ferrite plating enables us to synthesize spinel ferrite films at low temperature below 100 °C from aqueous solutions,²⁻⁴ the ferrite-plated films are easy to apply magnetic devices even using plastic substrates with flexibility and low cost. Thus, we investigated the MR effect of magnetite films prepared by the ferrite plating. The magnetite films synthesized by the ferrite plating were actually composed of Fe₃O₄ and γ-Fe₂O₃.⁴ The ratio in the films was changed by the degree of oxidation. In this paper, we investigated the dependence of magnetic and electrical properties of Fe3-xO4 films on a concentration of an oxidizing solution that influences the oxidation.

2. EXPERIMENTAL

Figure 1 shows the ultrasound-enhanced ferriteplating apparatus. The volume of the apparatus was 15 ml. Ultrasound waves (19.5 kHz, 600W) were applied by a horn $(30 \text{mm} \phi)$ to an aqueous reaction solution. The conditions of the solutions are listed in Table I. Both reaction and oxidizing solutions were supplied at the flow rate of 6.0 ml/min. The reaction temperature was 85°C. Fe_{3-x}O₄ films with thickness of 0.09~0.28 µm were deposited on glass substrates. The thickness of the films was determined by a scanning electron microscope. Crystallographic and magnetic properties were analyzed by a X-ray diffractometer (XRD) and a vibrating sample magnetometer (VSM), respectively. The ratio of Fe²⁺ ions to Fe³⁺ ions was evaluated by a Co⁵⁷-Mössbauer spectrometer. Current-in-plane (CIP) electrical properties were investigated by a four-probe method. MR measurements were performed in the maximum magnetic field of 2.5 kOe.

Table I Conditions for magnetite thin film

Reaction solution	FeCl ₂	0.025mol/l
Oxidizing	NaNO ₂	0.0014 ~ 0.0579mol/l
solution	CH ₃ COONH ₄	0.13 mol/l

Fig.1 Ultrasound-enhanced ferrite plating apparatus

3. RESULTS AND DISCUSSION

Figure 2 shows the XRD patterns of the $Fe_{3,x}O_4$ films fabricated at various concentrations of NaNO₂. The thickness at the concentration of NaNO₂ of 0.0217 mol/l was 0.28 µm, and the others were about 0.1 µm. These results indicate that crystallinity did not change much when C_{ox} increased up to 0.0217 mol/l.

Fig.2 XRD patterns of $Fe_{3-x}O_4$ films fabricated at various concentrations of NaNO₂ in oxidizing solution C_{ox}

Figure 3 shows the dependence of the saturation magnetization M_s on the concentration of NaNO₂. M_s was almost constant at 550 emu/cc when C_{ox} was 0.0029 - 0.0168 mol/l, and then decreased gradually with increasing C_{ox} .

Figure 4 shows the dependence of the electrical resistivity on C_{ox} . The electrical resistivity increased from 2.5 to 490 Ω cm with increasing C_{ox} . These values were 100 –1000 times higher than that of bulk Fe₃O₄.

Figure 5 shows the dependence of MR ratio on the concentration of NaNO₂. The MR ratio increased with increasing C_{ox} , reaching 5.5% at C_{ox} of 0.055 mol/l. The field where resistance took the maximum was extremely close to the coercivity. This suggests that MR of these plated films is associated with spin-dependent intergranular transport. Since the state that magnetic vectors of grains are anti-parallel is strongly dominant at the coercive field, the resistance is thought to take the maximum.

Fig.4 Dependence of electrical resistivity on concentration of $NaNO_2$ in oxidizing solution C_{ox}

Fig.5 Dependence of MR ratio on concentration of NaNO₂ in oxidizing solution C_{ox}

Figure 6 shows the Mössbauer spectra of the $Fe_{3,x}O_4$ films deposited at the concentration of NaNO₂ of (a) 0.0029mol/l and (b) 0.0217 mol/l. The ratio $Fe^{2.5+}$ in A site to Fe^{3+} in B site decreased from 1.308 to 1.168 when C_{ox} increased from 0.0029 to 0.0217 mol/l. From the theory of the hopping-conduction of electrons between Fe^{2+} ions and Fe^{3+} ions in magnetite films, the electrical resistivity increases with the increase of Fe^{3+} ions. The Mössbauer results agree with the increase in the resistivity with increasing C_{ox} because regions of γ - Fe_2O_3 that is an electrical insulator increased in the films.

Figure 7 shows a SEM cross section of the $Fe_{3-x}O_4$ films. The film exhibits columnar structure.

Taking the dependence of the MR ratio in Fig.5 and this columnar structure into account, the γ -Fe₂O₃ regions with no electrical conductivity existed in the grain boundaries, and the electrical transport and the MR effect were caused by spin-dependent tunneling through these insulating regions between Fe₃O₄ grains.

(a) Concentration of $NaNO_2 = 0.0029 \text{ mol/l}$

(b) Concentration of NaNO₂ = 0.0217 mol/l Fig.6 Mössbauer spectra

Fig.7 SEM image

4. CONCLUSION

The dependence of magnetic and electrical properties of $Fe_{3,v}O_4$ plated films on the concentration of the oxidizing agent was investigated. While saturation magnetization M_s decreased, the electrical resistivity of magnetite films increased from 2.5 to 490 Ω with increasing the concentration of NaNO2. The maximum value of the MR ratio was 5.5 %. The ratio of Fe^{2.5+} ions in A site to Fe³⁺ ions in B site decreased from 1.308 to 1.168 when the concentration of NaNO₂ increased from 0.0029 to 0.0217 mol/l, indicated the increase in insulating regions in the Fe_{3.x}O₄ films. Since the films exhibited columnar structure, the magnetoresistance of magnetite films fabricated by the ferrite plating was attributed to spin-dependent tunneling between Fe₃O₄ grains through insulating regions such as, y-Fe₂O₃, in the grain boundaries.

5. ACKNOWLEGEMENTS

This study has been financially supported by the "Research for the Future" Program, #JSPS-RFTF96R06901, from the Japan Society for the Promotion of Science, and by Kanagawa Academy of Science and Technology Research Grants.

6. REFERENCE

¹W. J. Gallagher, S.S. P. Parkin, Yu Lu, X. P. Bian, A. Marley, and K. P. Roche, J. Appl. Phys. **81**(8), 3741(1997)

²M.Abe, T.Itoh and Y.Tamaura, Thin Solid Films., **216**, 155 (1992)

³Y.Kitamoto, M.Zhang, S.Haijima, K.Matsumoto, and M.Abe, J.Phys. IV., **7**, C1-581(1997)(Proc. ICF 7,1996)

⁴M.Abe, Y.Kitamoto, K.Matsumoto, M.Zhang, and P.Li, IEEETrans.Magn., **33**, 3649 (1997)

(Received December 16, 1999; Accepted May 27, 2000)