ELECTRONIC STATES IN QUASIPERIODIC LATTICE, WHICH IS CONSIDERED TO CONSIST OF A SET OF A FEW KINDS OF CLUSTERS

Noriyuki Chiba and Toshiyuki Ninomiya
Department of Physics, Faculty of Science and Engineering, Chuo University, Kasuga 1-13-27 Bunkyo-ku, Tokyo 112-8551, JAPAN
Fax: 81-3-3817-1792, e-mail: chiba@phys.chuo-u.ac.jp

The electronic states in the lattice which consists of a few kinds of clusters are studied with regard to how the eigen states in the lattice are obtained from those of individual clusters. We show that the energies at which the Green's function is zero play the same role as the eigen energies. Then, we clarify the process of energy band formation associated with accumulation of atoms one by one. Addition of atoms is accompanied with migration of eigen states from one band to a neighboring band, and the patterns of this migration is discussed in relation with the structure of clusters. Key words: Quasiperiodic lattice, Fibonacci lattice, Electronic states, Tight-binding model

1 INTRODUCTION

Fibonacci lattice, a typical one-dimensional version of quasicrystal, has been extensively studied since the discovery of quasicrystal as a real material by Shechtman et al.[1] Fibonacci sequence is constructed recursively as $S_{i+1}=$ $S_{i} S_{i-1}$. It is well known that the energy spectrum of the electronic states in the Fibonacci lattice is a Cantor-like set of zero Lebesgue measure and all the the eigen states are neither localized nor extended, but critical. These results have mainly been obtained by trace mapping $[2,3]$ or renomarization technique $[4,5]$ based on the self-similarity of its structure. It seems that less attention has been paid to how the eigen states of the cluster S_{i+1} are given from those of S_{i} and S_{i-1} when connecting these clusters.

In the present work we develop a theory of electronic states in a cluster S_{γ} obtained by connection of two one-dimensional clusters of any type, S_{α} and S_{β}, and it is found that not only the eigen energies of S_{α} and S_{β} but also the energies at which their Green's functions are zero play important role in determining the eigen energies of the newly obtained cluster S_{γ} (Fig.1). The case of connection of mirror symmetric clusters, in which the Fibonacci sequence is included, is also discussed in Sec.3. In numerical calculation, atoms are accumulated one by one on a Fibonacci lattice, and we observe migration of the eigen states from a band to a neighboring band when the structure has a certain kind of patterns (Sec.4), that is, an eigen state is emitted from one band, when the end of the cluster has some special structure by adding an

Figure 1: Open circles and solid circles represent S_{α}, S_{β} respectively. S_{γ} is obtained by connecting S_{α} with S_{β} by hopping integral t.
atom, and is absorbed by the neighboring band when one more atom is accumulated.

2 ELECTRONIC STATES OF A COMBINED CLUSTER

In this section we discuss a case of connection of two clusters of arbitrary array of atom A and B , including periodic lattice, and give the condition which should be satisfied by eigen energies of a newly obtained cluster S_{γ} from S_{α} and S_{β} (Fig.1). For the electronic states we use the on-site tight-binding model defined by

$$
\begin{align*}
& \phi_{\alpha}(n+1)+\phi_{\alpha}(n-1)+V_{n} \phi_{\alpha}(n) \\
& \quad=E_{\alpha} \phi_{\alpha}(n) \text { for } 1 \leq n \leq N_{1} \tag{2.1}
\end{align*}
$$

where $\phi_{\alpha}\left(N_{1}+1\right)=0$ and

$$
\begin{align*}
& \phi_{\beta}(n+1)+\phi_{\beta}(n-1)+V_{n} \phi_{\beta}(n) \\
& \quad=E_{\beta} \phi_{\beta}(n) \text { for } N_{1}+1 \leq n \leq N_{2} \tag{2.2}
\end{align*}
$$

where $\phi_{\beta}\left(N_{1}\right)=0 . \phi_{\alpha}(n)$ and $\phi_{\beta}(n)$ denote wave function of S_{α}, S_{β} at the nth site.

Perturbation in the Hamiltonian caused by connection of S_{α} and S_{β} by hopping integral t between site N_{1} and $N_{1}+1$ is given by

$$
\begin{equation*}
\Delta\left(N_{1}, N+1\right)=t\left|N_{1}\right\rangle\left\langle N_{1}+1\right|+t\left|N_{1}+1\right\rangle\left\langle N_{1}\right|, \tag{2.3}
\end{equation*}
$$

here, $t=1$ for the Fibonacci sequence.
Now in order to obtain electronic states of S_{γ}, we expand the defined region of ϕ_{α} and ϕ_{β} to $1 \leq n \leq N_{2}$, and ϕ_{α} and ϕ_{β} are given to satisfy

$$
\begin{array}{ll}
\phi_{\alpha}(n)=0 & n \geq N_{1}+1 \\
\phi_{\beta}(n)=0 & n \leq N_{1} \tag{2.5}
\end{array}
$$

Then, $\phi_{\alpha}(n)$ and $\phi_{\beta}(n)$ are orthogonal.
The Green's function $\mathrm{G}(z)$ for S_{γ} satisfies the Dyson expansion

$$
\begin{equation*}
\mathrm{G}(z)=\mathrm{G}_{0}(z)+\mathrm{G}_{0}(z) \Delta\left(N_{1}, N_{1}+1\right) \mathrm{G}(z) \tag{2.6}
\end{equation*}
$$

and we obtain

$$
\begin{align*}
& \mathrm{G}\left(n, n^{\prime} ; z\right)=\mathrm{G}_{0}\left(n, n^{\prime} ; z\right) \\
& \quad+t \mathrm{G}_{0}\left(n, N_{1} ; z\right) \mathrm{G}\left(N_{1}+1, n^{\prime} ; z\right) \\
& \quad+t \mathrm{G}_{0}\left(n, N_{1}+1 ; z\right) \mathrm{G}\left(N_{1}, n^{\prime} ; z\right), \tag{2.7}
\end{align*}
$$

where $\mathrm{G}\left(n, n^{\prime} ; z\right) \equiv\langle n| \mathrm{G}(z)\left|n^{\prime}\right\rangle . \mathrm{G}_{0}\left(n, n^{\prime} ; z\right)$ is the Green's function for S_{α} in the case of $n, n^{\prime} \leq$ N_{1} and for S_{β} in the case of $n, n^{\prime} \geq N_{1}+1$ and $\mathrm{G}_{0}\left(n, n^{\prime} ; z\right)=0$ for $n \leq N_{1}$ and $n^{\prime} \geq N_{1}+1$.

Then the poles of $\mathrm{G}\left(n, n^{\prime} ; z\right)$ which indicate E_{γ} are given by

$$
\begin{equation*}
\mathrm{G}_{\alpha}\left(E_{\gamma}\right) \mathrm{G}_{\beta}\left(E_{\gamma}\right)=t^{-2} \tag{2.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{\alpha} \frac{\left|\phi_{\alpha}\left(N_{1}\right)\right|^{2}}{E_{\gamma}-E_{\alpha}} \sum_{\beta} \frac{\left|\phi_{\beta}\left(N_{1}+1\right)\right|^{2}}{E_{\gamma}-E_{\beta}}=t^{-2} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{G}_{\alpha}(z) & \equiv \mathrm{G}_{0}\left(N_{1}, N_{1} ; z\right) \tag{2.10}\\
\mathrm{G}_{\beta}(z) & \equiv \mathrm{G}_{0}\left(N_{1}+1, N_{1}+1 ; z\right) \tag{2.11}
\end{align*}
$$

Because right hand side of (2.8) is positive, both $\mathrm{G}_{\alpha}\left(E_{\gamma}\right)$ and $\mathrm{G}_{\beta}\left(E_{\gamma}\right)$ must be positive or negative. Then the region in which the eigen states E_{γ} exist are given by configuration of E_{α}, E_{β} and $E_{\alpha}^{*}, E_{\beta}^{*}$ where $E_{\alpha}^{*}, E_{\beta}^{*}$ are the energy at which $\mathrm{G}_{\alpha}\left(E_{\alpha}^{*}\right)=0, \mathrm{G}_{\beta}\left(E_{\beta}^{*}\right)=0$ respectively (Fig.2). Every masked region contains one eigen state.

3 ELECTRONIC STATES OF MIRROR SYMMETRIC CLUSTERS

Fibonacci lattice can be divided into the three kinds of clusters of mirror symmetry which are called singular words $w_{n} .[6]$ For example, the clusters are

$$
\begin{equation*}
w_{1}=A A, w_{2}=B A B, w_{3}=A A B A A \tag{3.1}
\end{equation*}
$$

And w_{n} satisfies

$$
\begin{equation*}
w_{n}=w_{n-2} w_{n-3} w_{n-2} \quad n \geq 1 \tag{3.2}
\end{equation*}
$$

If we use the similar way of description for mirror symmetric cluster S_{α} and S_{β}, this corresponds to

$$
\begin{equation*}
S_{\gamma}=S_{\beta} S_{\alpha} S_{\beta} \tag{3.3}
\end{equation*}
$$

Using the method discussed in Sec.2, eigen energies of S_{γ} can be obtained from S_{β}, S_{α}. The Green's function for S_{γ} has the poles at the energy which is given by

$$
\begin{equation*}
\left(\mathrm{G}_{\alpha}\left(E_{\gamma}\right) \pm \mathrm{G}_{0}\left(N_{1}+1, N_{2} ; E_{\gamma}\right)\right) \mathrm{G}_{\beta}\left(E_{\gamma}\right)=t^{-2} \tag{3.4}
\end{equation*}
$$

Considering the symmetry, $\mathrm{G}_{\alpha}(z), \mathrm{G}_{0}\left(N_{1}+\right.$ $\left.1, N_{2} ; z\right)$ can be divided into symmetric and antisymmetric part as follows

$$
\begin{align*}
\mathrm{G}_{\alpha}(z) & =\mathrm{G}_{\alpha_{+}}(z)+\mathrm{G}_{\alpha_{-}}(z) \tag{3.5}\\
\mathrm{G}_{0}\left(N_{1}+1, N_{2} ; z\right) & =\mathrm{G}_{\alpha_{+}}(z)-\mathrm{G}_{\alpha_{-}}(z) \tag{3.6}
\end{align*}
$$

where $\mathrm{G}_{\alpha_{+}}(z)$ and $\mathrm{G}_{\alpha_{-}}(z)$ are symmetric and antisymmetric parts of $\mathrm{G}_{\alpha}(z)$ respectively. From these we obtain symmetric and antisymmetric eigen states shown as

$$
\begin{align*}
\mathrm{G}_{\alpha_{+}}\left(E_{\gamma}\right) \mathrm{G}_{\beta}\left(E_{\gamma}\right) & =\frac{t^{-2}}{2} \tag{3.7}\\
\mathrm{G}_{\alpha_{-}}\left(E_{\gamma}\right) \mathrm{G}_{\beta}\left(E_{\gamma}\right) & =\frac{t^{-2}}{2} \tag{3.8}
\end{align*}
$$

Therefore the regions in which eigen energies exist are given similarly to Fig. 2.

Figure 2: The solid and broken lines give the energy E_{α}, E_{β} and $E_{\alpha}^{*}, E_{\beta}^{*}$ respectively, where the upper and lower section of the horizontal line are for S_{α} and S_{β}. Eigen states exist only in the masked region.
(a).

(b).

Figure 3: The numerical results on shift of eigen energies when adding atoms one by one. Circles denote eigen energies of system size N. Here we take $V_{A}=-V_{B}=0.6$.

4
 THE PROCESS OF ENERGY BAND FORMATION ASSOCIATED WITH ACCUmULATING ATOMS ONE BY ONE

Figure 3 shows results of numerical calculation on shift of eigen energies from a band to a neighboring band via localized states when atom are accumulated one by one to grow a Fibonacci lattice (Fig.3b). If S_{β} is only one atom, which has the potential $V\left(=V_{A}\right.$ or $\left.V_{B}\right)$,

$$
\begin{equation*}
\mathrm{G}_{\beta}(z)=\frac{1}{z-V} \tag{4.1}
\end{equation*}
$$

and from (2.8) the poles of the present system are given by

$$
\begin{equation*}
\mathrm{G}_{\alpha}(E)=t^{-2}(E-V) \tag{4.2}
\end{equation*}
$$

Shift of the energies due to addition of one atom A or B is generally summarized as follows :
a). Eigen energies E_{α} higher than V shift to higher side but not beyond E_{α}^{*}, and E_{α} lower than V shift to lower side but not beyond E_{α}^{*}.
b). An eigen state is generated near V.

Here we discuss the shift observed in the energy gap ranging ($\epsilon_{0} \sim \epsilon_{1}$) in more detail (Fig.3a). As shown in (3.1) the Fibonacci sequence consists of $w_{1}=A A, w_{2}=B A B$, and $w_{3}=$ $A A B A A$, and $A A$ and $A A B A A$ have $B A B$ on their both sides. Since the number of $A A B A A$, $N_{w_{3}}$, is as large as $\tau N_{w_{1}}(\tau=(\sqrt{5}+1) / 2),[6]$ we may roughly consider that main character is determined by the sequence $\cdots w_{2} w_{3} w_{2} w_{3} \cdots$. Then, the sequence is considered to have the structure in which $A B A$ and $B A B$ are separated with single A. For example, atoms at 170th through 184th site is given as

(Case A).
This structure is also regarded as

where $A A B$'s are arranged with alternating direction and are separated with single A or B.

The wave function $\psi(n)$ at the edge of the band ϵ_{0} is such that given in Fig.4: that is, the wave function has a small value at the sites where $A B A$ and $B A B$ are separated. This situation takes place because one of the eigen energies of $A B A$ and $B A B$ have the same magnitude $\sqrt{2+V^{2}}$, which is very near the energy at the band edge. Then, the wave functions must have the opposite phase but the same magnitude at the sites just before and after the site where the wave function disappears. We have a similar result on the wave function at the band edge ϵ_{1} (Case B). Here the wave function disappears at the site 171,175 and 179 th.

Figure 3 shows that the emission of an eigen state from the band edge ϵ_{0} to the middle of the band gap take place when an atom A is added on $B A B$ or $A B A$ at end of the Fibonacci lattice. Second step, that is, the absorption of the state by the band edge ϵ_{1} take place because of further addition of A on $B A B A$ or B on $A B A A$ (This implies the formation of $B A A$ or $A A B$). This also gives that we have the migration from ϵ_{0} to ϵ_{1} by the accumulation four atoms, which is in agreement with computer simulation. In the case of 165 th and 186 th atoms the migration occurs by accumulation of five atoms after the emission due to the 160th and 181th atoms. This reflects that the Fibonacci sequence is not purely of $\cdots w_{2} w_{3} w_{2} w_{3} \cdots$.

5 CONCLUSIONS

We have developed the theory which gives the eigen energies of a combined clusters and found that the energy at which the Green's function is zero is important in determining the eigen energies. We also found that accumulation of atoms one by one on a Fibonacci lattice clarifies the process of energy band formation through the migration of eigen states from one band to a neighboring band.

Figure 4: Wave function $\psi(n)$ of system size $N=180$ at energy $E=1.597$. Circles indicate A-site. Arrows indicate the sites which separate $A B A$ and $B A B$. The wave function has a small value at these sites.

References

[1] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).
[2] M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett. 50, 1870 (1983).
[3] M. Kohmoto, B. Sutherland and C. Tang Phys. Rev. B35, 1020 (1987).
[4] Q. Niu and F. Nori Phys. Rev. B42, 10329 (1990).
[5] Y. Liu and W. Sritrakool Phys. Rev. B43, 1110 (1991).
[6] Wen Zhi-Ying,"BEYOND QUASICRYSTALS" Ed. by F.AXIEL, D.GRATIAS, Springer-Verlag, Berlin Heidelberg New York (1995) pp. 433-440.
(Received December 17, 1999; Accepted August 16, 2000)

