Hückel and Anti-Hückel Rings of Pure Carbon Clusters

Mineo Saito and Yasuharu Okamoto*
NEC Informatec Systems, Ltd., 34 Miyukigaoka, Tsukuba, 305-8501, JAPAN
Fax: +81-298-56-6173, e-mail: mineo@nis.nec.co.jp
*Fundamental Research Laboratory, NEC Corporation, 34 Miyukigaoka, Tsukuba, 305-8501, JAPAN
Fax: +81-298-50-2647, email:okamoto@frl.cl.nec.co.jp

Abstract

Bond-alternation in polyyne-rings with neutral and negative charges is examined based on hybrid-density-functional theory. A prominent difference in the symmetry-lowering distortions between the 4 N and $4 \mathrm{~N}+2$ member rings was reported. These distortions are discussed in terms of physics (Peierls distortion and the Kohn anomaly) and of chemistry (the first- and second- order Jahn-Teller effects).

Key Words: carbon cluster, Peierls distortion, Jahn-Teller effect, density functional theory

1. INTRODUCTION

The occurrence of bond alternation in various carbon bond networks is a fundamental issue in both chemistry and solid state physics. Among the hydrocarbon sp^{2} bond systems, cyclobutadiene $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)$ is a 4 N member anti-Hückel ring with bond alternation, while benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is a $4 \mathrm{~N}+2$ Hückel system without the bond alternation. The infinite periodic system, polyacetylene, is a bond alternant material because of the Peierls distortion [1]. Likewise, Peierls like distortion of bond alternation occurs in $4 \mathrm{~N}+2$ member ring annulenes ($\mathrm{C}_{4 \mathrm{~N}+2} \mathrm{H}_{4 \mathrm{~N}+2}$) when N is large $[2,3]$.
Here we argue a similar situation exists for sp bond systems. The infinite polyyne chain is a bondalternant system due to the Peierls distortion while monocyclic carbon $4 \mathrm{~N}(4 \mathrm{~N}+2)$ member rings of small N have bond-length alternating (nonalternating) geometries [4,5]. Thus, as in the annulenes, the bond-length alternation is expected to occur for $4 \mathrm{~N}+2$ member rings for large N . Understanding these pure carbon ring clusters is important toward clarification of the formation mechanism of fullerenes $[6,7]$. Moreover, examination of bond alternation will help explain how the electronic structures of finite systems approach those of infinite periodic systems.
In this paper, we examine the mechanism of bond alternation in carbon ring systems in terms of physics and chemistry: Through solid-state physics, the bond alternation in periodic systems is considered based on the Peierls distortion and through chemistry for finite systems the alternation is discussed based on the first-order Jahn-Teller effect (FOJTE) and second-order JahnTeller effect (SOJTE). We discuss our findings obtained through these two approaches to clarify the relation between infinite (crystal) and finite (cluster) systems. To examine the occurrence of the bond alternation, we used the hybrid density functional theory (DFT) because it more accurately
incorporates the electron many body effects than does the Hartree-Fock (HF) method or conventional DFT [local density approximation (LDA) and generalized gradient approximation (GGA)]: The hybrid DFT gave results comparable with those of accurate electron-correlation calculations $[8,9]$.

We used the hybrid DFT method, following Becke's method of three parameters (B3LYP) [10]: The exchange energy was a mixture of those of the HF and DFT (LDA and the GGA of Beck's type [11]) and the correlation energy consisted of those of the LDA [12] and of the Lee-Yang-Parr type GGA [13]. We used the basis set of Dunning's correlation consistent polarized valence double zeta (cc-pVDZ) type [14] which accurately reproduces vibrational frequencies [5]. All the calculations were performed using the Gaussian 94 program [15].

2. RESULTS

We started with 4 N member rings and found that the high symmetry atomic structure of $\mathrm{D}_{4 \mathrm{Nb}}$ is unstable for both the neutral and negative charge states and that the stable structure has $\mathrm{C}_{2 \mathrm{Nh}}$ symmetry as a consequence of bond-angle and bond-length alternations (Fig. 1). The difference between the two bond-lengths was found to be larger in the neutral charge state than in the negative charge state, while the difference between the two bond-angles was slightly smaller in the neutral charge state (Fig. 2). As the size became larger, the bond-angle alternation decreased for both charge states.

Next the $4 N+2$ member rings with the neutral charge states were examined. Up to $\mathrm{N}=4$, the stable structure was found to have $\mathrm{D}_{2 \mathrm{~N}+1 \mathrm{~h}}$ symmetry with bond-angle alternation and without bond-length alternation. When N was larger than 4, bondlength alternation occured and thus the symmetry was lowered to $\mathrm{C}_{2 \mathrm{~N}+1 \mathrm{~h}}$. The bond-length alternation
increased as the size became larger, while the bond-angle alternation decreased (Fig. 2). For the negative charge state ($\mathrm{N}=2-4$), the symmetry was lowered drastically to $\mathrm{C}_{2 \mathrm{v}}$.

3. DISCUSSION

Here we qualitatively discuss the mechanism of the bond alternation revealed through the above first-principles calculations. In the high symmetry geometry ($\mathrm{D}_{2 \mathrm{n}}$) for 2 n member rings, the molecular orbital is given by

$$
\begin{equation*}
\Psi_{k, \mathrm{k}}=\sum_{i=1}^{2 n} \theta_{\mathrm{k}}(i) \exp [2 \pi(i-1) k / 2 n] \tag{1}
\end{equation*}
$$

where k ranges from $-\mathrm{n}+1$ to n . $\theta_{k}(\mathrm{i})$ is the localized atomic orbital at the i-th site and the subscript κ differentiates π and σ. The π orbitals mainly consist of out-of plane p and the σ orbitals mainly consist of in-plane p in the direction perpendicular to the bond axis. Our electronic structure calculations indicated that the molecular orbitals for π and σ are nearly degenerated. Hereafter, we assume that these two orbitals have the same energy. We introduce K defined as $|\mathrm{k} / 2 \mathrm{n}|$, which, in the periodic linear polyyne, corresponds to the dimensionless crystal wave number. In this periodic system, the Fermi wave number is $\mathrm{K}_{\mathrm{f}}=0.25$ and the $2 \mathrm{~K}_{\mathrm{f}}$ phonon induces the Peierls distortion (bond-length alternation) because this phonon opens the band gap at K_{f}. In the neutral 4 N member rings, the highest occupied molecular orbitals (HOMO) have $\mathrm{K}=\mathrm{K}_{\mathrm{f}}$ and are half occupied.

Fig. 1 The $\mathrm{C}_{6 \mathrm{~h}}$ structure of C_{12}. The neighboring bond-lengths (angles) are different from each other. (The bond-length alternation is small, thus somewhat unclear from the figure).

Fig. 2 Geometrical parameters of carbon rings. The circles, rectangles, and triangles indicate neutral 4 N , negatively charged 4 N , and neutral $4 \mathrm{~N}+2$ rings, respectively.

Fig. 3 Vibrational frequencies of $\mathrm{C}_{18}\left(\mathrm{D}_{18 \mathrm{~h}}\right)$. The rectangles, circles and triangles indicate the bondstretching, bond-bending and out-of-plane modes, respectively.

This is why the 4 N member rings have bond-length alternation ($\mathrm{K}=2 \mathrm{~K}_{\mathrm{f}}$) that opens the gap for the HOMO. In contrast, the neutral $4 \mathrm{~N}+2$ member rings have a fully occupied HOMO with $\mathrm{K}=\mathrm{N} /(4 \mathrm{~N}+2)$ and a lowest unoccupied molecular orbital (LUMO) with $\mathrm{K}=(\mathrm{N}+1) /(4 \mathrm{~N}+2)$. Because there is no level at $K_{t}=0.25$, the bond-length alternation is prevented for small N. However, both HOMO and LUMO approach K_{f} as N becomes large, and the bond-length alternation occurs for large N as was indicated by our calculation. A similar discussion concerning K for the finite and infinite systems was provioded by Bylaska et al.[4]: They argued that a relation exists between the sampling points in the Brillouin zone integration for the periodic system and the discrete levels of ring clusters.

In chemistry, the instability of the high symmetry is explained as shown in the following equation [2]:

$$
\begin{equation*}
E(Q)=E_{e q}+F Q+\frac{1}{2} S Q^{2}, \tag{2}
\end{equation*}
$$

where the total energy is expanded over a vibrational mode that was not totally symmetric, Q . Here, F and S are given by the following equations:

$$
\begin{equation*}
\left.F=<\Phi_{0}\left|\frac{\partial H}{\partial Q}\right| \Phi_{0}\right\rangle \tag{3}
\end{equation*}
$$

and

$$
\begin{aligned}
& S=<\Phi_{0}\left|\frac{\partial^{2} H}{\partial Q^{2}}\right| \Phi_{0}> \\
& -2 \sum_{n \neq 0} \frac{k \Phi_{n}|\partial H / \partial Q| \Phi_{0}>\left.\right|^{2}}{\left(E_{n}-E_{0}\right)}
\end{aligned}
$$

where H and Φ_{n} are the total hamiltonian and the wavefunction of the n -th electronic state (Φ_{0} indicates the ground state). In the following discussions, the electron many-body effect is
neglected (When the Slater determinant is used for Φ, the analysis based on Eq. (2) should be different from the present one because an exchange effect splits degenerated levels in some cases [2]). When the HOMO is degenerated and is partially filled, F is non-zero and the FOJTE is active. In contrast, when the HOMO is completely filled and the energy difference between the HOMO and the LUMO is small, the second term of S becomes significant because of the energy denominator and thus the potential curvature becomes negative This case corresponds to the SOJTE.

In the neutral 4 N member rings of $\mathrm{D}_{4 \mathrm{Nh}}$, the halffilled HOMO belongs to $\mathrm{E}_{\mathrm{Nx}}(\mathrm{K}=0.25)$, where x is u or g depending on the characteristics of σ and π. Thus, the FOJTE occurs. $\mathrm{E}_{\mathrm{Nx}} \times \mathrm{E}_{\mathrm{Nx}}$ includes the symmetric products, $\quad \mathrm{B}_{1 g}\left(\mathrm{~K}=0.5\right.$.) and $\mathrm{B}_{2 \mathrm{~g}}(\mathrm{~K}=0.5)$, that correspond to the bond-angle and bond-length alternations, respectively, and these alternations lower the symmetry to $\mathrm{C}_{2 \mathrm{Nh}}$. The bond-angle (bondlength) distortion has a transverse (Iongitudinal) characteristic so bond-angle distortion is prevented in an infinite periodic system whereas the bondlength alternation is preserved. In the negatively charged rings, the HOMO ($\mathrm{K}=0.25$) is also partially occupied, therefore the FOJTE occurs as in the neutral rings.

In the neutral $4 \mathrm{~N}+2$ member rings, the HOMO belong to $\mathrm{E}_{\mathrm{Nx}}[\mathrm{K}=\mathrm{N} /(4 \mathrm{~N}+2)]$ and is fully occupied. Therefore, the FOJTE is inactive. However, when the HOMO-LUMO gap is small, the second term in Eq. (4) induces softening of modes belonging to the representations of the product of HOMO and LUMO. The LUMO belongs to $\mathrm{E}_{\mathrm{N}+1 \mathrm{x}}$ $[\mathrm{K}=(\mathrm{N}+1) /(4 \mathrm{~N}+2)]$ so the HOMO-LUMO product includes $\mathrm{B}_{1 \mathrm{u}}(\mathrm{K}=0.5), \mathrm{B}_{2 \mathrm{u}}(\mathrm{K}=0.5), \mathrm{B}_{1 \mathrm{~g}}(\mathrm{~K}=0.5)$ and $\mathrm{E}_{1 \mathrm{u}}[\mathrm{K}=1 /(4 \mathrm{~N}+2)] . \mathrm{B}_{1 \mathrm{u}}\left(\mathrm{B}_{2 \mathrm{u}}\right)$ corresponds to the bondlength (bond-angle) alternation and the $\mathrm{B}_{1 \mathrm{~g}}$ mode is characterized by out-of-plane displacement. In Fig. 3, we show the vibrational frequencies of C_{18} $\left(\mathrm{D}_{18 \mathrm{~h}}\right)$. The $\mathrm{B}_{1 \mathrm{u}}$ and $\mathrm{B}_{2 \mathrm{u}}$ modes were prominently softened and this softening corresponds to the Kohn-anomaly at $2 \mathrm{~K}_{\mathrm{f}}$ in a periodic system [16]. The $\mathrm{B}_{1 \mathrm{~g}}$ mode was slightly softened. In contrast to the three high-wave-number modes ($\mathrm{K}=0.5$), substantial softening of the low-wave-number mode, $\mathrm{E}_{1 \mathrm{u}}$, was not observed. Our calculation indicated that the frequency of $\mathrm{B}_{2 \mathrm{u}}$ is imaginary up to $\mathrm{N}=6$, whereas the $\mathrm{B}_{1 \mathrm{u}}$ mode has a real frequency up to $\mathrm{N}=4$ and an imaginary frequency when $\mathrm{N}>4$. This imaginary frequency arises because the energy denominator of the second term in Eq. (4) becomes small as N increases. Thus, as mentioned, the symmetry determined by our calculation was $D_{2 n+1 h}$ when $\mathrm{N} \leqq 4$ and was lowered to $\mathrm{C}_{2 \mathrm{n}+1 \mathrm{~h}}$ for $\mathrm{N}>4$. In both 4 N (neutral and negative charge) and $4 \mathrm{~N}+2$ (neutral) member rings, the
bond-angle alternation decreased [Fig. 2(b)] since the $2 \mathrm{~K}_{\mathrm{f}}$ distortion with the transverse character does not occur in an infinite periodic system.

As for the negative charge state of $4 \mathrm{~N}+2$ member rings, the LUMO of the neutral charge state is occupied by a single electron, and so the FOJTE occurs. $\mathrm{E}_{\mathrm{N}+1 \mathrm{x}} \times \mathrm{E}_{\mathrm{N}+1 \mathrm{x}}$ includes the symmetric product, $\mathrm{E}_{2 \mathrm{Nx}}[\mathrm{K}=2 \mathrm{~N} /(4 \mathrm{~N}+2)]$, leading to drastic symmetry lowering as shown by our calculation.

4. CONCLUSION

We have performed first-principles calculations concerning bond alternation in carbon rings. In 4 N member rings, both bond-length and bondangle alternation were found to occur for neutral and negative charge states. In the neutral $4 \mathrm{~N}+2$ member rings, only the bond-angle alternation was found to occur when N was small and both alternations were found to occur when $\mathrm{N}>4$. For the negative charge state of $4 \mathrm{~N}+2$ member rings, we found that the symmetry was lowered drastically to $\mathrm{C}_{2 \mathrm{v}}$. We explained these symmetry lowering features in terms of the FOJTE and SOJTE and of the Peierls distortion.

The carbon ring geometries that we have found help to explain obsereved photoelectron vibrational fine structures of anions which also provide important information about the carbon-ring geometries: According to the Franck-Condon principle, the fine structures originate from the difference in geometry between the negative and neutral charge states [17,18]. Also, an experiment has indicated that the structure differs significantly between the 4 N and $4 \mathrm{~N}+2$ member rings [17]. Our theoretical analysis of spectroscopy experiments will be reported elsewhere.
[1] S. Suhai, Phys. Rev. B 51, 16553 (1995); S. Hirata, H. Torii, and M. Tasumi, Phys. Rev. B 57, 11994 (1998).
[2] L. Salem, The molecular orbital theory of conjugated systems (Benjamin, New York, 1966); T. Nakajima, Topics in Current Chemistry (Springer, Heidelberg, 1972), Vol. 32.
[3] C. H. Choi and M. Kertesz, J. Chem. Phys. 108, 6681 (1998).
[4] E. J. Bylaska, J. H. Weare, and R. Kawai, Phys. Rev. B 58, R7488 (1998).
[5] J. M. L. Martin, J. El-Yazal, and J-P Francois, Chem. Phys. Lett. 242, 570 (1995).
[6] G. von Helden, N. G. Gotts, and M. T. Bowers, Nature(London) 363, 60 (1993).
[7] J. N. Hunter, J. Fey, and M. F. Jarrold, Science 260, 784 (1993).
[8] Y. Okamoto, Phys. Rev. B 58, 6760 (1998); Y. Okamoto, M. Saito, and A. Oshiyama, Phys. Rev. B 58, 7701 (1998).
[9] M. Saito and Y. Okamoto, Phys. Rev. B 60, 8939 (1999).
[10] A. D. Becke, J. Chem, Phys. 98, 5643 (1993).
[11] A. D. Becke, J. Chem, Phys. 88, 1053 (1988).
[12] S. J. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200 (1980); D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
[13] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785 (1988).
[14] T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).
[15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P.M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A.Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian 94, Gaussian, Inc., Pittsburgh PA, 1995.
[16] M. Saito, A. Oshiyama, and Y. Miyamoto, Phys. Rev. B 57, R9412 (1998).
[17] T. Wakabayashi, M. Kohno, Y. Achiba, H. Shiromaru, T. Momose, T. Shida, K. Naemura, and Y. Tobe., J. Chem. Phys. 107, 4783 (1997).
[18] H. Handschuh., G. Gantefür, B. Kessler, P. S. Bechthold, and W. Eberhardt, Phys. Rev. Lett. 74, 1095(1995).

